
NICTA Copyright 2012 From imagination to impact

Querying and
Exchanging XML and

RDF on the Web

WWW'12 Tutorial

Sherif Sakr (NICTA and UNSW)
Axel Polleres (Siemens AG)

NICTA Copyright 2012 From imagination to impact

Tutorial Overview
Session 1

 XQuery Overview – Sherif
 SPARQL Overview – Axel
 XSPARQL: a combined language – Axel

Session 2
 XQuery implementations – Sherif
 SPARQL implementations – Sherif
 XSPARQL implementations – Axel

 (optional) Compression formats for XML+RDF: EXI+HDT – Sherif

 Q/A - Discussion

NICTA Copyright 2012 From imagination to impact

XQuery

NICTA Copyright 2012 From imagination to impact 4

  XQuery is a declarative language in which a query is represented as an

expression.

  XQuery expressions can be nested with full generality.

XQuery

NICTA Copyright 2012 From imagination to impact 5

XQuery, XSLT and XPath

NICTA Copyright 2012 From imagination to impact 6

  The XQuery language is designed to operate over

ordered, finite sequences of items as its principal

data type.

  The evaluation of any XQuery expression yields an

ordered sequence of n >= 0 items.

  These items can be:

  Atomic values (integers, strings, ..., etc)

  Unranked XML tree nodes.

XQuery Data Model

NICTA Copyright 2012 From imagination to impact 7

  A sequence of n items Xi is written in parentheses and comma-
separated form

(X1,X2,…,Xn)
  A single item X and the singleton sequence (X) are equivalent.

  Sequences can not contain other sequences (nested sequences are
implicitly flattened)

(0, (), (1, 2), (3)) = (0, 1, 2, 3)
(0,1) ≠ (1,0)

  Sequences can contain duplicates
(0, 1, 1, 2)

  Sequences may be heterogeneous
(42, "foo", 4.2, <a>)

Items and Ordered Sequences

NICTA Copyright 2012 From imagination to impact 8

  Programming language features:
  Explicit iteration and variable bindings (for, let, …).
  Recursive, user-defined functions.
  Regular expressions, strong [static] typing.
  Ordered sequences (much like lists or arrays).

  Query language features:
  Filtering.
  Grouping.
  Joins.

XQuery = ½ Programming Language + ½ Query Language

NICTA Copyright 2012 From imagination to impact 9

  A strongly-typed, Turing-complete XML manipulation language
  Attempts to do static type checking against XML Schema

  Based on an object model derived from Schema
  Unlike SQL, fully compositional, highly orthogonal:

  Inputs & outputs collections (sequences or bags) of XML nodes

  Anywhere a particular type of object may be used, may use the results
of a query of the same type

  Designed mostly by DB and functional language people
  Attempts to satisfy the needs of data management and

document management
  The database-style core is mostly complete (even has support for

NULLs in XML!!)

  The document keyword querying features are still in the works – shows
in the order-preserving default model

XQuery

NICTA Copyright 2012 From imagination to impact 10

  Extracting information from a database for use in web service.

  Generating summary reports on data stored in XML database.

  Searching textual documents on the web for relevant information.

  Transforming XML data to XHTML format to be published on the

web.

  Pulling data from different databases to be used for application

integration.

  Splitting up an XML document into multiple XML documents.

Some Uses for XQuery

NICTA Copyright 2012 From imagination to impact 11

  Path expressions.

  FLWOR expressions.

  Expressions involving operators and functions .

  Conditional expressions.

  Quantified expressions.

  List constructors.

  Element constructors.

  Expressions that test or modify datatypes

XQuery Expressions

NICTA Copyright 2012 From imagination to impact 12

  In a sense, the traversal or navigation of trees of XML

nodes lies at the core of every XML query language.

  XQuery embeds XPath as its tree navigation sub-language.

  Every XPathexpression is a correct XQuery expression.

  Since navigation expressions extract (potentially huge

volumes of) nodes from input XML documents, efficient

XPath implementation is a prime concern to any

implementation of an XQuery processors.

Path Expression

NICTA Copyright 2012 From imagination to impact 13

ϒ  Each path consists of one or more steps, syntactically

separated by /

s0/s1/. . . /sn

ϒ  Each step acts like an operator that, given a sequence of

nodes (the context set), evaluates to a sequence of nodes.

ϒ  XPath defines the result of each path expression to be

duplicate free and sorted in document order.

Path Expression

NICTA Copyright 2012 From imagination to impact 14

  A FLWOR expression binds some expressions, applies a predicate,
and constructs a new ordered result.

FLWOR Expression

NICTA Copyright 2012 From imagination to impact 15

  Has an analogous form to SQL’s
SELECT..FROM..WHERE..GROUPBY..ORDER BY

  The model: bind nodes (or node sets) to variables; operate over each
legal combination of bindings; produce a set of nodes

  “FLWOR” statement:
for {iterators that bind variables}

let {collections}

where {conditions}

order by {order-conditions}

return {output constructor}

FLWOR Expression

NICTA Copyright 2012 From imagination to impact 16

  The for construct successively binds

each item of an expression (expr) to a

variable (var), generating a so-called tuple
stream.

  This tuple stream is then filtered by the

where clause, retaining some tuples and

discarding others.

  The return clause is evaluated once for
every tuple still in the stream.

  The result of the expression is an ordered

sequence containing the concatenated

results of these evaluations.

FLWOR Expression

NICTA Copyright 2012 From imagination to impact 17

FLWOR Expression

NICTA Copyright 2012 From imagination to impact 18

for $book in document("bib.xml")//book,
 $quote in document("quotes.xml")//listing
where $book/isbn = $quote/isbn
return
<book>

 { $book/title }
 { $quote/price }

</book>

Inner Joins

NICTA Copyright 2012 From imagination to impact 19

for $book in document("bib.xml")//book
return
<book>

 { $book/title }
 {

for $review in document("reviews.xml")//review
where $book/isbn = $review/isbn
return $review/rating

 }
</book>

Outer Joins

NICTA Copyright 2012 From imagination to impact 20

  for iterates on a sequence, binds a variable to each node.
  let binds a variable to a sequence as a whole.
  Together, they are used for representing aggregation and grouping

expressions.

for $book in document("bib.xml")//book
let $a := $book/author
where contains($book/publisher, "Addison-Wesley”)
return

<book>
 {

 $book/title,
<count> Number of authors: { count($a) } </count>
 }

</book>

Aggregation - Grouping

NICTA Copyright 2012 From imagination to impact 21

  Infix and prefix operators (+, -, *,…).

  Parenthesized expressions.

  Arithmetic and logical operators.

  Collection operators UNION, INTERSECT and

EXCEPT.

  Infix operators BEFORE and AFTER (<< , >>).

  User functions can be defined in XQuery.

XQuery Operators and Functions

NICTA Copyright 2012 From imagination to impact 22

Node Comparisons

NICTA Copyright 2012 From imagination to impact 23

XQuery Comparisons

Value comparing single values

Untyped data => string

eq, ne, lt, le, gt, ge

General Existential quantification

Untyped data => coerced to
other operand’s type

=, !=, <=, <, >, >=

Node for testing identity of single
nodes

is, isnot

Order testing relative position of
one node vs. another (in
document order)

<<, >>

NICTA Copyright 2012 From imagination to impact 24

  Logical Operators “and” and “or”.
  The concept of Effective Boolean Value(EBV) is key to evaluating

logical expressions.

  EBV of an empty sequence is false.

  EBV of a non-empty sequence containing only nodes is true.

  EBV is the value of the expression if the expression evaluates to
a value of type xs:boolean.

  EBV is an error in every other case.
  e.g: The expression “() and true()” evaluates to false(since () is

false)

Logical Expression

NICTA Copyright 2012 From imagination to impact 25

  Over 100 functions built into XQuery.
  String-related

  substring, contains, concat,…
  Date-related

  current-date, month-from-date,…
  Number-related

  round, avg, sum, …
  Sequence-related

  index-of, distinct-values,…
  Node-related

  data, empty,…
  Document-related

  doc, collection, …
  Error Handling

  error, exactly-one, …
  ….

XQuery: Built-in Functions

NICTA Copyright 2012 From imagination to impact 26

  XQuery expressions can contain user-defined
functions which encapsulate query details.

  User-defined functions may be collected into modules
and then ’import’ed by a query.

XQuery: User-Defined Functions

NICTA Copyright 2012 From imagination to impact 27

User-Defined Functions Example

NICTA Copyright 2012 From imagination to impact 28

  Syntax:
 if (expr1) then expr2 else expr3
  if EBV of expr1is true, the conditional expression evaluates to the

value of expr2, else it evaluates to the value of expr3.
  Parentheses around if expression (expr1) are required.
  else is always required but it can be just else ().
  Useful when structure of information returned depends on a

condition.
  Can be nested and used anywhere a value is expected.

 if($book/@year <1980)
 then<old>{$x/title}</old>
 else<new>{$x/title}</new>

Conditional Expression

NICTA Copyright 2012 From imagination to impact 29

  Used as an alternative way of writing the FLWOR expressions.

FLWOR:for $a in document(“bib.xml“)//article
 where $a/year < 1996
 return $a

Conditional:for $a in document(“bib.xml“)//article
return

If ($a/year < 1996)

then$a

else()

Conditional Expression

NICTA Copyright 2012 From imagination to impact 30

  Syntax:
[some | every]$var in expr satisfies test_expr
  Quantified expressions evaluate to a boolean value.
  Evaluation:

  $var is bound to each of the items in the sequence resulting from
expr.

  For each binding, the test_expr is evaluated.

  In case of
  Existential quantification (“some”), if at least one evaluation of

test_expr evaluates “true”, the entire expression evaluates “true”.

  Universal quantification (“every”), all evaluations of test_exp rmust
result in an EBV of “true” for the expression to return “true”.

Quantified Expressions

NICTA Copyright 2012 From imagination to impact 31

  Existential Quantification

  Give me all books where “Sailing” appear at least once in the

same paragraph.

for $b in document("bib.xml")//book

where some $p in $b//para satisfies(contains($p,”Sailing”))

return $b/title

Quantified Expressions

NICTA Copyright 2012 From imagination to impact 32

  Universal Quantification

  Give me all books where “Sailing” appears in every paragraph.

for $b in document("bib.xml")//book

where every $p in $b//para satisfies(contains($p,”Sailing”))

return $b/title

Quantified Expressions

NICTA Copyright 2012 From imagination to impact 33

  A list may be constructed by enclosing zero or more

expressions in square brackets, separated by commas.

  For example, [$x, $y, $z] denotes a list containing three

members represented by variables.

  [] denotes an empty list.

XQuery List Constructors

NICTA Copyright 2012 From imagination to impact 34

  XML tree fragments may be constructed “on the fly” in

queries:
for $i in doc("auction.xml") /site/regions/australia/item

return

<item>

<name>{$i/name/text()}</name>

<description >{$i/description}</description>

</item>

XQuery Element Constructors

NICTA Copyright 2012 From imagination to impact 35

  Separate XQuery documents that contain function

definitions.

  Why?

  Reusing functions among many queries.

  Defining standard libraries that can be distributed to a variety of

query users.

  Organizing and reducing the size of query modules.

Library Modules

NICTA Copyright 2012 From imagination to impact 36

Library Modules

NICTA Copyright 2012 From imagination to impact 37

  Declared and bound in the query prolog and used
through the query.

  Can be
  Referenced in a function that is declared in that module.

  Referenced in other modules that import the module.

Global Variables

NICTA Copyright 2012 From imagination to impact 38

  It is easy to learn if knowledge of SQL and XPath is present.

  When queries are written in XQuery, they require less code than queries written

in XSLT do.

  XQuery can be used as a strongly typed language when the XML data is typed,

which can improve the performance of the query by avoiding implicit type casts

and provide type assurances that can be used when performing query

optimization.

  XQuery can be used as a weakly typed language for untyped data to provide

high usability.

  Because XQuery requires less code to perform a query than does XSLT,

maintenance costs are lower.

  XQuery is supported by major database vendors.

Advantages of XQuery

NICTA Copyright 2012 From imagination to impact 39

  Selecting information based on specific criteria

  Filtering out unwanted information

  Searching for information within a document or set of documents

  Joining data from multiple documents or collections of documents

  Sorting, grouping, and aggregating data

  Transforming and restructuring XML data into another XML

vocabulary or structure

  Performing arithmetic calculations on numbers and dates

  Manipulating strings to reformat text

Capabilities of XQuery

NICTA Copyright 2012 From imagination to impact 40

  Extracting information from a relational database for use in a web service

  Generating reports on data stored in a database for presentation on the

Web as XHTML

  Searching textual documents in a native XML database and presenting the

results

  Pulling data from databases or packaged software and transforming it for

application integration

  Combining content from traditionally non-XML sources to implement

content management and delivery

  Ad hoc querying of standalone XML documents for the purposes of testing

or research

Uses of XQuery

NICTA Copyright 2012 From imagination to impact

Tutorial Overview
Session 1

 XQuery Overview – Sherif
 SPARQL Overview – Axel
 XSPARQL: a combined language – Axel

Session 2
 XQuery implementations – Sherif
 SPARQL implementations – Sherif
 XSPARQL implementations – Axel

 (optional) Compression formats for XML+RDF: EXI+HDT – Sherif

 Q/A - Discussion

NICTA Copyright 2012 From imagination to impact

XQuery
Implementations

NICTA Copyright 2012 From imagination to impact

XQuery Processors
•  Native XML/XQuery Processors: The implementations of this

approach make use of storage models, indexing and querying
mechanisms that have been designed specifically for XML data.

•  Streaming XQuery Processors: The implementations of this
approach receive the XML data in the form of continuous streams of

tokens and apply on the fly the query processing functionalities over

them.

•  Relational XQuery Processors: The implementations of this

approach makes use of the relational indexing and querying
mechanisms for querying the source XML data..

NICTA Copyright 2012 From imagination to impact

Timber

•  A native XML database which is able to store and query XML

documents.

•  It uses the tree-based query algebra (TAX) which considers

collections of ordered labelled trees as the basic unit of
manipulation

•  Each operator takes one or more sets of trees as input and

produces a set of trees as output.

•  The query plan tree is evaluated by pipelining one operator at a

time.

•  The query execution heavily depends on structural joins.

http://www.eecs.umich.edu/db/timber/

NICTA Copyright 2012 From imagination to impact

Natix

•  Another native XML database which clusters subtrees of XML

documents into physical records of limited size.

•  The XML data tree is partitioned into small subtrees and each

subtree is stored into a data page.

•  The query execution engine consists of an iterator-based

implementation of algebraic operators which process ordered

sequences of tuples.

Thorsten Fiebig, Guido Moerkotte: Algebraic XML Construction and its Optimization in Natix. World Wide
Web 4(3) , 2001

NICTA Copyright 2012 From imagination to impact

DB2/System RX

•  A native XML support and XQuery implementation in IBM DB2.

•  It uses a new XML data type which can be used like any other
SQL type.

•  A column of type XML can hold one well-formed XML document
for every row of the table.

•  Relational and XML data are stored differently while the relational
columns are stored in traditional row structures, the XML data is
stored in hierarchical structures.

•  It uses Structural Indexes, Value Indexes and Full-text Indexes.

•  Supports interfaces for both SQL/XML and XQuery.

Matthias Nicola and Bert Van der Linden. Native XML Support in DB2 Universal Database. VLDB, 2005.

NICTA Copyright 2012 From imagination to impact

DB2/System RX

NICTA Copyright 2012 From imagination to impact

DB2/System RX

NICTA Copyright 2012 From imagination to impact

DB2/System RX

NICTA Copyright 2012 From imagination to impact

DB2/System RX

NICTA Copyright 2012 From imagination to impact

FluXQuery

•  A streaming XQuery processor that is based on an internal query

language called FluX which extends the main structures of XQuery

by introducing a construct for event-based query processing.

•  The buffer size is then optimized by analyzing the schema

constraints of the XML document as well as the query syntax.

•  FluX queries are transformed into physical query plans which are

translated into executable JAVA code or interpreted and executed

using the Streamed Query Evaluator.

Christoph Koch, Stefanie Scherzinger, Nicole Schweikardt, and Bernhard Stegmaier. FluXQuery: An
Optimizing XQuery Processor for Streaming XML Data. VLDB, 2004.

NICTA Copyright 2012 From imagination to impact

FluXQuery

NICTA Copyright 2012 From imagination to impact

SQL Server

•  Introduces native storage for XML data as a new, rich data type called
XML. A table may contain one or more columns of type XML wherein
both rooted XML trees and XML fragments can be stored.

•  The hierarchical nature of the XML data is modelled as parent-child
relationship using a node labelling scheme.

•  XQuery expressions are compiled into a query trees that can be
optimized and executed by the relational query processor.

•  It uses a set of relational operators which is extended with additional
operators for XML processing named as relational+ operators.

•  The XML operator mapper recursively traverses the XML algebra tree
and for each operator a relational operator sub-tree is generated and
inserted into the overall relational operator tree for the XQuery
expression.

Shankar Pal et al. XQuery Implementation in a Relational Database System. VLDB, 2005.

NICTA Copyright 2012 From imagination to impact

SQL Server

NICTA Copyright 2012 From imagination to impact

Pathfinder
•  A purely relational XQuery processor

http://pathfinder-xquery.org/

NICTA Copyright 2012 From imagination to impact

Pathfinder
Relational XML Encoding

Torsten Grust: Accelerating XPath location steps. SIGMOD, 2002

NICTA Copyright 2012 From imagination to impact

Pathfinder

NICTA Copyright 2012 From imagination to impact

Pathfinder

Torsten Grust, Sherif Sakr, Jens Teubner: XQuery on SQL Hosts. VLDB, 2004

Relational XQuery Complialtion

NICTA Copyright 2012 From imagination to impact

Pathfinder

Torsten Grust, Sherif Sakr, Jens Teubner: XQuery on SQL Hosts. VLDB, 2004

NICTA Copyright 2012 From imagination to impact

Other Projects

•  Galax
–  http://www.galaxquery.org/

•  MXQuery
–  http://mxquery.org/

•  Zorba
–  http://www.zorba-xquery.com/html/index

•  BaseX
–  http://basex.org/

•  Xyleme
–  http://www.xyleme.com/

•  eXist
–  http://exist.sourceforge.net/

•  Saxon
–  http://saxon.sourceforge.net/

•  MarkLogic
–  http://developer.marklogic.com/

NICTA Copyright 2012 From imagination to impact

XML Database Benchmarks

•  XBench
–  http://se.uwaterloo.ca/~ddbms/projects/xbench/index.html

•  XMach
–  http://dbs.uni-leipzig.de/en/projekte/XML/XmlBenchmarking.html

•  XMark
–  http://www.xml-benchmark.org/

•  XOO7
–  http://www.comp.nus.edu.sg/~ebh/XOO7/main.html

•  TPoX
–  http://tpox.sourceforge.net/

•  XPathMark
–  http://sole.dimi.uniud.it/~massimo.franceschet/xpathmark/

•  MemBeR
–  http://ilps.science.uva.nl/Resources/MemBeR/member-

generator.html
•  XSelMark

–  http://xselmark.sourceforge.net/

NICTA Copyright 2012 From imagination to impact

Tutorial Overview
Session 1

 XQuery Overview – Sherif
 SPARQL Overview – Axel
 XSPARQL: a combined language – Axel
 Compression formats for XML+RDF: EXI+HDT – Sherif

Session 2
 XQuery implementations – Sherif
 SPARQL implementations – Sherif
 XSPARQL implementations – Axel

 (optional) Compression formats for XML+RDF: EXI+HDT – Sherif

 Q/A - Discussion

NICTA Copyright 2012 From imagination to impact

SPARQL
Implementations

NICTA Copyright 2012 From imagination to impact

Two Alternatives to Store RDF Data

•  Relational RDF Stores

–  Takes advantage of 30+ years of R&D

–  A schema design exercise?

–  Requires a SPARQL-to-SQL layer

–  Relative flexibility in choosing the actual back-end

•  Native RDF Stores

–  Takes advantage of 30+ years of R&D

–  Highly tuned for RDF data

NICTA Copyright 2012 From imagination to impact

Relational RDF Stores

•  Vertical (triple) table stores: where each RDF triple is stored

directly in a three-column table (subject, predicate, object).

•  Property (n-ary) table stores: where multiple RDF properties are

modeled as n-ary table columns for the same subject.

•  Horizontal (binary) table stores: where RDF triples are modeled

as one horizontal table or into a set of vertically partitioned binary

tables (one table for each RDF property).

Sherif Sakr, Ghazi Al-Naymat: Relational processing of RDF queries: a survey. SIGMOD Record 38(4) , 2009

NICTA Copyright 2012 From imagination to impact

Relational RDF Stores

&2	 &1	 &3	 John	

UNSW	

John@cse.unsw.edu.au	

www.cse.unsw.edu.au/~john	

Querying	 RDF	 Data	 Survey	 Paper	

Alice	

Alice@nicta.com.au	 NICTA	

518	

affiliatedBy	 webPage	 affiliatedBy	 hasEmail	

hasEmail	

authoredBy	 editedBy	 hasName	 hasName	

roomNo	 hasTitle	 publicaRonType	

SELECT	 	 	 	 ?Z	
WHERE	 	 {	 ?X	 	 hasTitle	 “Querying	 RDF	 Data”.	 	 ?X	 	 publicaRonType	 “Survey	 Paper”.	

	 ?X	 	 authoredBy	 ?Y.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ?Y	 	 	 webPage	 ?Z.	 } 	 	

NICTA Copyright 2012 From imagination to impact

Vertical (triple) table stores

Id1 publicationType Survey Paper

Id1 hasTitle Querying RDF Data

Id1 authoredBy Id2

Id2 hasName John

Id2 affiliatedBy UNSW

Id2 hasEmail John@cse.unsw.edu.au

Id2 webPage www.cse.unsw.edu.au/~john

Id1 editedBy Id3

Id3 hasName Alice

Id3 affiliatedBy NICTA

Id3 hasEmail Alice@nicta.com.au

Id3 roomNo 518

Select	 	 T3.Object	
From	 Triples	 as	 T1,	 Triples	 as	 T2,	
	 	 	 	 	 	 	 	 	 	 	 Triples	 as	 T3,	 Triples	 as	 T4	
Where	
T1.Predicate=“publicaRonType”	 and	
T1.Object=“Survey	 Paper”	 	
and	 T2.predicate=“hasTitle”	 	
and	 T2.Object=“Querying	 RDF	 Data”	
and	 T3.Predicate=“webPage”	
and	 T1.subject=T2.subject	
and	 T4.subject=T1.subject	 	
and	 T4.Predicate=“authoredBy”	 	
and	 T4.Object	 =	 T3.Subject	

No schema changes as new triples are added to the store
SPARQL queries result in equivalent SQL queries involving multiple self-joins

NICTA Copyright 2012 From imagination to impact

Property Table Stores
Publica0on	

Person	

Select	 	 Person.webPage	
From	 Person,	 PublicaRon	
Where	 PublicaRon.publicaRonType	 =	 “Survey	 Paper”	
and	 	 PublicaRon.hasTitle	 =	 “Querying	 RDF	 Data”	
and	 	 PublicaRon.authoredBy	 =	 Person.ID	

Id1 Survey Paper Querying RDF Data Id2 id3

Id2 John UNSW John@cse.unsw.edu.au www.cse.unsw.edu.au/~john

Id3 Alice NICTA Alice@nicta.com.au 518

Implicit or explicit knowledge is required to build the property tables

NICTA Copyright 2012 From imagination to impact

Horizontal (Binary) Table Stores

Id1 Survey Paper

publicationType

Id1 Querying RDF Data

hasTitle

Id2 John

Id3 Alice

hasName

Id2 UNSW

Id3 NICTA

affiliatedBy

Id2 John@cse.unsw.edu.au

Id3 Alice@nicta.com.au

hasEmail

Id3 518
roomNo	

Id2 www.cse.unsw.edu.au/~john

webPage

Id1 Id2

authoredBy

Id1 Id3

editedBy

Select	 	 webPage.value	
From	 	 PublicaRonType,	 hasTitle,	 	
	 	 	 	 	 	 	 	 	 	 	 	 authoredBy,	 webPage	
Where	 	 publicaRonType.value	 =	 “Survey	 Paper”	
and	 hasTitle.value	 =	 “Querying	 RDF	 Data”	
and	 	 publicaRonType.ID	 =	 hasTitle.ID	
and	 	 publicaRonType.ID	 	 =	 authoredBy.ID	
and	 	 	 authoredBy.value	 =	 webPage.ID	

Does this work for Dbpedia which has approx. 65K properties?

NICTA Copyright 2012 From imagination to impact

RDF-3X

•  An RDF query engine which tries to overcome the criticism that

triples stores incurs too many expensive self-joins by creating the
exhaustive set of indexes and relying on fast processing of merge

joins.

•  The physical design of RDF-3x is workload-independent and

eliminates the need for physical-design tuning by building indexes

over all 6 permutations of the three dimensions that constitute an
RDF triple.

•  Additionally, indexes over count-aggregated variants for all three
two-dimensional and all three one-dimensional projections are

created.

Thomas Neumann, Gerhard Weikum: The RDF-3X engine for scalable management of RDF data. VLDB J. 19
(1), 2010

NICTA Copyright 2012 From imagination to impact

RDF-3X

•  The query processor uses the full set of indexes on the triple tables to rely
mostly on merge joins over sorted index lists.

•  The query optimizer relies upon its cost model in finding the lowest-cost
execution plan and mostly focuses on join order and the generation of

execution plans.

•  Additionally, indexes over count-aggregated variants for all three two-
dimensional and all three one-dimensional projections are created.

•  It relies on two kinds of statistics:

–  Specialized histograms which are generic and can handle any kind of triple
patterns and joins. The disadvantage of histograms is that it assumes
independence between predicates.

–  Frequent join paths in the data which give more accurate estimation.

Thomas Neumann, Guido Moerkotte: Characteristic sets: Accurate cardinality estimation for RDF queries
with multiple joins. ICDE, 2011

NICTA Copyright 2012 From imagination to impact

Hexastore

•  RDF storage scheme with main focuses on scalability and generality in its
data storage, processing and representation.

•  Hexastore is based on the idea of indexing the RDF data in a multiple
indexing scheme.

•  Each RDF element type have its special index structures built around it.

•  Every possible ordering of the importance or precedence of the three
elements in an indexing scheme is materialized.

•  In total, six distinct indices are used for indexing the RDF data. These
indices materialize all possible orders of precedence of the three RDF
elements.

•  A clear disadvantage of this approach is that it features a worst-case five-
fold storage increase in comparison to a conventional triples table.

Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein: Hexastore: sextuple indexing for semantic web
data management. PVLDB 1(1), 2008

NICTA Copyright 2012 From imagination to impact

Hexastore

An Example SPO Index of Hexastore

NICTA Copyright 2012 From imagination to impact

Oracle RDF

•  Oracle introduced an Oracle-based SQL table function RDFMATCH

to query RDF data.

•  The results of RDFMATCH table function can be further processed

by SQL’s rich querying capabilities and seamlessly combined with

queries on traditional relational data.

•  The core implementation of RDFMATCH query translates to a self-

join query on triple-based RDF table store.

•  The resulting query is executed efficiently by making use of B-tree

indexes as well as creating materialized join views for specialized

subject-property.

Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan Srinivasan: An Efficient SQL-based
RDF Querying Scheme. VLDB, 2005

NICTA Copyright 2012 From imagination to impact

Oracle RDF

•  Subject-Property Matrix materialized join views are used to minimize

the query processing overheads that are inherent in the canonical

triple-based representation of RDF.

•  The materialized join views are incrementally maintained based on

user demand and query workloads.

•  A special module is provided to analyze the table of RDF triples and

estimate the size of various materialized views, based on which a

user can define a subset of materialized views.

NICTA Copyright 2012 From imagination to impact

Oracle RDF

NICTA Copyright 2012 From imagination to impact

Workload Independent Property Tables

•  The approach provides a tailored schema for each RDF data based
on two main parameters:
–  The Support threshold which represents a value to measure the

strength of correlation between properties in the RDF data.

–  The null threshold which represents the percentage of null storage
tolerated for each table in the schema.

•  The approach involves two phases
–  The clustering phase scans the RDF data to automatically discover

groups of related properties (i.e., properties that always exist together
for a large number of subjects).

–  The partitioning phase goes over the formed clusters and balances the
trade-off between storing as many RDF properties in clusters as
possible while keeping null storage to a minimum based on the null
threshold.

Justin J. Levandoski and Mohamed F. Mokbel: RDF Data-Centric Storage. ICWS, 2009

NICTA Copyright 2012 From imagination to impact

Path-Based RDF Stores

•  The main focus of this approach is to improve the performance
for path queries by extracting all reachable path expressions for
each resource and store them.

•  There is no need to perform join operations unlike the flat tripe
stores or the property tables approach.

•  The RDF graph is divided into subgraphs and then each
subgraph is stored by applicable techniques into distinct relational
tables. More precisely, all classes and properties are extracted
from RDF schema data, and all resources are also extracted from
RDF data.

•  Each extracted item is assigned an identifier and a path
expression and stored in corresponding relational table.

Akiyoshi Matono, Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke Uemura: A Path-based
Relational RDF Database. ADC, 2005

NICTA Copyright 2012 From imagination to impact

SW-Store

•  The triples table is rewritten into n two-column tables where n is

the number of unique properties in the data.

•  In each binary table, the first column contains the subjects that

define that property and the second column contains the object
values for those subjects while the subjects that do not define a

particular property are simply omitted from the table for that

property.

•  Each table is sorted by subject, so that particular subjects can be

located quickly, and that fast merge joins can be used to
reconstruct information about multiple properties for subsets of

subjects.
Daniel J. Abadi, Adam Marcus, Samuel Madden, and Kate Hollenbach: SW-Store: a vertically partitioned

DBMS for Semantic Web data management. VLDB J. 18(2), 2009

NICTA Copyright 2012 From imagination to impact

SW-Store

•  For a multi-valued attribute, each distinct value is listed in a
successive row in the table for that property.

•  The implementation of SW-Store relies on a column-oriented DBMS,
C-store, to store tables as collections of columns rather than as
collections of rows.

•  The advantage of this approach is that while property tables need to
be carefully constructed so that they are wide enough but not too
wide to independently answer queries, the algorithm for creating
tables in the vertically partitioned approach is straightforward and
need not change over time.

•  The main disadvantages of this approach are: the increased cost of
inserts new triples and the cost of tuple reconstruction

NICTA Copyright 2012 From imagination to impact

SW-Store

NICTA Copyright 2012 From imagination to impact

AdaptRDF

•  A two-phase approach for designing efficient tailored but flexible

storage solution for RDF data based on its query workload.

•  A workload-aware vertical partitioning phase.

–  Reduces the number of join operations in the query evaluation

process

•  An automated adjustment phase

–  Maintains the efficiency of the performance of the query

processing by adapting the underlying schema to cope with the

dynamic nature of the query workloads

–  Rows pivoting and uninviting

Hooran MahmoudiNasab and Sherif Sakr: Efficient and Adaptable Query Workload-Aware Management for
RDF Data. WISE, 2010

NICTA Copyright 2012 From imagination to impact

AdaptRDF

Ver0cal	 Par00oning	 Algorithm	
(VP)	

IniRal	 query	 workload	 RDF	 Dataset	

IniRal	 Schema	
(Triple	 Store	 +	 Property	 Tables)	

Monitoring Module
(Re-apply VP)

Adjusted	 Schema	

Adjusting Module
(Pivoting/Unpivotting)

Query	 workload	 stream	

NICTA Copyright 2012 From imagination to impact

AdaptRDF

NICTA Copyright 2012 From imagination to impact

AdaptRDF

NICTA Copyright 2012 From imagination to impact

RDF Benchmarks
•  Lehigh University Benchmark (LUBM)

–  http://swat.cse.lehigh.edu/projects/lubm/

–  (University domain)

•  Berlin SPARQL Benchmark (BSBM)
–  http://www4.wiwiss.fu-berlin.de/bizer/berlinsparqlbenchmark/

–  E-Commerce domain

•  The SP²Bench SPARQL Performance Benchmark
–  http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B
–  DBLP Scenario

•  The DBpedia SPARQL Benchmark
–  http://aksw.org/Projects/DBPSB

–  Wikipedia + YAGO

NICTA Copyright 2012 From imagination to impact

Benchmarkings (1)

•  The benchmark implements two relational RDF storage solutions –

triple-store and vertically-partitioned – in a MonetDB/SQL, a fully-
functional open source column-store, and a well-known – for its

performance – commercial row-store DBMS.

•  The vertically-partitioned approach does not outperform triple-store

when both are implemented in a row-store engine.

•  The vertically-partitioned approach outperforms triple-store when both
are implemented in a column-store. The processing efficiency of

column-stores is particularly suited for RDF data management
applications.

Lefteris Sidirourgos, Romulo Goncalves, Martin L. Kersten, Niels Nes, and Stefan Manegold. Column-
store support for RDF data management: not all swans are white. PVLDB 1(2), 2008

NICTA Copyright 2012 From imagination to impact

Benchmarkings (1)

Lefteris Sidirourgos, Romulo Goncalves, Martin L. Kersten, Niels Nes, and Stefan Manegold. Column-
store support for RDF data management: not all swans are white. PVLDB 1(2), 2008

  Once the proper clustered indices are used in a row-store engine,

the triple-store performs better than the vertically-partitioned
approach.

  There is a potential of a scalability problems for the vertically-
partitioned approach when the number of properties in an RDF data-

set is high. With a larger number of properties, the triple-store
solution manages to outperform the vertically-partitioned approach

also on a column-store engine.

NICTA Copyright 2012 From imagination to impact

Benchmarkings (2)

  The benchmark evaluates the approaches of relational processing

for RDF Queries: triple stores (TS), binary table stores (BS),

property table stores (PS) and traditional relational stores (RS).

  The experimental evaluation is done on top of the SP2Bench

benchmark and compares the following metrics: loading time,

storage costs and query performance.

  The RS scheme is the fastest due to the less required number of

insert tuple operations. Similarly, the TS requires less loading time

than BS since the number of inserted tuples and updated tables are

smaller for each triple.

Hooran MahmoudiNasab and Sherif Sakr: An Experimental Evaluation of Relational RDF Storage and
Querying Techniques. BenchmarX, 2010

NICTA Copyright 2012 From imagination to impact

Benchmarkings (2)

  The RS scheme represents the cheapest approach because of the

normalized design and the absence of any data redundancy. The

BS scheme represents the most expensive approach due to the

redundancy of the ID attributes for each binary table.

  There is no clear winner between the triple store (TS) and the binary

table (BS) encoding schemes. Triple store (TS) with its simple

storage and the huge number of tuples in the encoding relation is

still very competitive to the binary tables encoding scheme because

of the full set of B-tree physical indexes over the permutations of the

three encoding fields (subject; predicate; object).

Hooran MahmoudiNasab and Sherif Sakr: An Experimental Evaluation of Relational RDF Storage and
Querying Techniques. BenchmarX, 2010

NICTA Copyright 2012 From imagination to impact

Benchmarkings (2)

Hooran MahmoudiNasab and Sherif Sakr: An Experimental Evaluation of Relational RDF Storage and
Querying Techniques. BenchmarX, 2010

  The query performance of the (BS) encoding scheme is affected

badly by the increase of the number of the predicates In the input

query. It is also affected by the subject-object or object-object type of

joins where no index information is available for utilization. Such

problem could be solved by building materialized views over the

columns of the most frequently referenced pairs of attributes.

  Although their generality, there is still a clear gap between the query

performance of the (TS) and (BS) encoding schemes in comparison

with the tailored relational encoding scheme (RS) of the RDF data.

NICTA Copyright 2012 From imagination to impact

Matrix "Bit“ loaded

•  A compressed bit-matrix structure for storing huge RDF graphs.

•  The RDF data is represented by a 3D bit-cube, where each dimension of the
bitcube represents subjects, predicates, and objects.

•  The volume of this bitcube is Vs × Vp × Vo.

•  Each cell in the bitcube represents a unique RDF triple that can be formed
by the combination of S, P, O positions which are the coordinates of that bit.

•  For each matrix, it stores two bitarrays – row and column bitarray – which
give a condensed representation of all the non-empty row and column
values in the given BitMat.

•  It employs an initial pruning technique, followed by a variable-binding-
matching algorithm on BitMats to produce the final results.

•  It does not build intermediate join tables and works directly on the
compressed data.

Medha Atre, Vineet Chaoii, Mohammed J. Zaki, James A. Hendler: Matrix "Bit" loaded: a scalable
lightweight join query processor for RDF data . WWW, 2010

NICTA Copyright 2012 From imagination to impact

Matrix "Bit“ loaded

NICTA Copyright 2012 From imagination to impact

Jena

•  Developed by the Hewlett Packard Semantic Web Lab.

•  Jena is a Semantic Web application framework for Java.

•  It provides a programming environment for semantic technologies

such as RDF(S) and OWL that supports SPARQL queries and a

rule-based inference engine.

•  Its engine is a combination of in-memory and native.

•  A native, on-disk implementation of Jena is the Jena TDB triple

store.

http://incubator.apache.org/jena/

NICTA Copyright 2012 From imagination to impact

Jena

•  Triples are stored in the form of a dictionary. Every node is given a

unique ID and instead of storing the whole node, only their ID is put

in the triple store.

•  Jena supports different RDF syntaxes: RDF/XML, N3, N-Triples,

Turtle.

•  Jena SDB version can use PostgreSQL, MySQL, Oracle or MS SQL

Serveras its backend.

http://incubator.apache.org/jena/

NICTA Copyright 2012 From imagination to impact

AllegroGraph

•  AllegroGraph is a persistent graph database developed by Franz
Inc. that uses in-memory utilization in combination with native
engine in order to maintain billions of quads.

•  AllegroGraph supports named graphs. It has an optimised
indexing system consisting of different combinations of S, P, O, G
and I.

•  It has a mechanism of automatic index optimisation that optimises
indices based on how much they are used.

•  Querying can be done through SPARQL 1.1 queries, with support
for full-text, geospatial and geotemporal search.

•  It is also compatible with a lot of other Franz technologies such as
RacerPro, Pepito, TopBraid Composer, etc. to improve
performance and usability.

http://www.franz.com/agraph/allegrograph/

NICTA Copyright 2012 From imagination to impact

AllegroGraph

•  In June 2011, AllegroGraph announced at Semtech conference a

load and query of 310 Billion triples as part of a joint project with

Intel.

•  In August 2011, AllegroGraph announced that with the help

of Stillwater SC and Intel, they achieved the industry's first load and

query of 1 Trillion RDF Triples. Total load was 1,009,690,381,946

triples in just over 338 hours for an average rate of 829,556 triples

per second.

•  It is in late-stage development on a clustered version that will push

storage into trillions of triples.

http://www.franz.com/agraph/allegrograph/

NICTA Copyright 2012 From imagination to impact

Virtuoso

•  Virtuoso is an object-relational SQL database that supports
SPARQL embedded into SQL for querying RDF data in the
Virtuoso database.

•  Querying can be done by using SPARQL queries. There is
however no SPARQL endpoint, only an SQL command line
interface through which you can send SPARQL 1.1 queries to the
Virtuoso repository.

•  There is also a possibility to send the queries using ODBC,
JDBC, ADO.NET or OLE DB.

•  Full-text search and geospatial search are also supported.
•  The reasoner that is implemented in the Virtuoso store is a

backward chaining OWL reasoner, but reasoning can be added
through the Jena framework.

http://www.openlinksw.com/dataspace/dav/wiki/Main/VOSRDF

NICTA Copyright 2012 From imagination to impact

Mulgara

•  Mulgara was formerly known as Kowari.
•  An Open Source, massively scalable, transaction-safe, purpose-built

database for the storage, retrieval and analysis of metadata.
•  It supports RDF and OWL.
•  It is optimised for large amounts of triples, for metadata in particular,

but it keeps low memory requirements.
•  Triples in the Mulgara store are stored natively (on-disk), both locally

or distributed.
•  Supports SPARQL in addition to a language called TQL where Full-

text search functionality is also available.
•  Mulgara supports: RDF/XML, N-Triples, Turtle.
•  Mulgara has a reasoner that supports: DAML+OIL, RDF(S) and OWL

http://www.mulgara.org/

NICTA Copyright 2012 From imagination to impact

Other Projects
•  Sesame

–  http://www.openrdf.org/
•  3Store

–  http://www.aktors.org/technologies/3store/
•  4store

–  http://4store.org/
•  BigOWLIM

–  http://www.ontotext.com/owlim/editions
•  Bigdata

–  http://www.systap.com/bigdata.htm
•  BrightstarDB

–  http://www.brightstardb.com/
•  Apache Fuseki

–  http://incubator.apache.org/jena/documentation/serving_data/

NICTA Copyright 2012 From imagination to impact

Other Projects
•  Parliament

–  http://parliament.semwebcentral.org/
•  OpenAnzo

–  http://www.openanzo.org/
•  StrixDB

–  http://www.strixdb.com/
•  Redstore

–  http://www.aelius.com/njh/redstore/
•  Meronymy

–  http://www.meronymy.com/
•  Neo4j

–  http://neo4j.org/
•  rdfstore-js

–  https://github.com/antoniogarrote/rdfstore-js

NICTA Copyright 2012 From imagination to impact

Benchmarkings (3)

Nicolas Vanden Bossche and Christopher Matheus: Benchmarking RDF Stores. Bell Labs Technical
Report, 2011

  The benchmark compared between: Jena TDB, AllegroGraph,
OWLIM-SE, Sesame and Mulgara.

  The experiments have been conducting using the LUMB, BSBM and
SP²Bench benchmarks.

  The comparison metrics are: Loading time, Query time and ease of
use.

  The experiments reported that the Mulgara was the easies to install,
run and use.

  OWLIM has the best performance for loading time and query time
followed by Mulgara then Jena.

  AllegroGraph is the most robust tested system.

NICTA Copyright 2012 From imagination to impact

Distributed Processing of RDF/SPARQL

•  A horizontally scalable RDF database system.

•  It installs a best-of-breed RDF-store on a cluster of machines (they
use RDF-3X since they found this to be the fastest single-node
RDF-store in their benchmarking).

•  It partitions an RDF data set across the data stores. Instead of
randomly assigning triples to partitions using hash partitioning, they
take advantage of the fact that RDF uses a graph data model, they
use an optimized graph partitioning algorithm.

•  Triples that are close to each other in the RDF graph to be stored on
the same machine and a smaller amount of network communication
at query time is required.

Jiewen Huang, Daniel J. Abadi and Kun Ren:Scalable SPARQL Querying of Large RDF Graphs. PVLDB 4
(1), 2011

NICTA Copyright 2012 From imagination to impact

Distributed Processing of RDF/SPARQL

•  In order to maximize the percentage of query processing that can be

done in parallel, they allow some overlap of data across partitions.

•  They use a method for automatic decomposition mechanism of queries

into chunks that can be performed independently, with zero

communication across partitions. These chunks are then reconstructed

using the Hadoop MapReduce framework (HadoopDB).

•  The performance is up to three orders of magnitude more efficient than

popular multi-node RDF data management systems.

Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexander Rasin and Avi Silberschatz: HadoopDB: An
Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. PVLDB 2(1), 2009

NICTA Copyright 2012 From imagination to impact

Distributed Processing of RDF/SPARQL

Jiewen Huang, Daniel J. Abadi and Kun Ren:Scalable SPARQL Querying of Large RDF Graphs. PVLDB 4
(1), 2011

• The master node also serves as the
interface for SPARQL queries. It accepts
queries and analyzes them closely.
•  If it determines that the SPARQL pattern
can be searched for completely in parallel
by each worker in the cluster, then it sends
the pattern to each node in the cluster for
processing.
• If, it determines that the pattern requires
some coordination across workers during
the search, it decomposes the query into
subgraphs that can be searched for in
isolation, and ships these subgraphs to the
worker nodes.

NICTA Copyright 2012 From imagination to impact

PigSPARQL

•  A system which gives us the opportunity to process complex

SPARQL queries on a MapReduce cluster.

•  SPARQL queries are translated into Pig Latin, a data analysis

language developed by Yahoo! Research.

•  Pig Latin programs are executed by a series of MapReduce jobs on

a Hadoop cluster.

•  PigSPARQL offers not only a declarative way of specifying the

transformation part, but also a scalable implementation of the whole

ETL-process on a MapReduce cluster.

Alexander Schätzl, Martin Przyjaciel-Zablock and Georg Lausen: PigSPARQL: Mapping SPARQL to Pig
Latin. SWIM, 2011

NICTA Copyright 2012 From imagination to impact

PigSPARQL

Alexander Schätzl, Martin Przyjaciel-Zablock and Georg Lausen: PigSPARQL: Mapping SPARQL to Pig
Latin. SWIM, 2011

NICTA Copyright 2012 From imagination to impact

HBase vs MySQL Cluster

•  A comparison between HBase and MySQL Cluster for SPARQL

query processing.

•  An experimental comparison of the two proposed approaches on a

cluster of commodity machines LUMB.

•  Both approaches were up to the task of efficiently storing and

querying large RDF datasets.

•  The the HBase solution was capable of dealing with larger RDF

datasets and showed superior query performance and scalability.

•  Cloud computing has a great potential for scalable Semantic Web

data management.

Craig Franke, Samuel Morin, Artem Chebotko, John Abraham and Pearl Brazier: Distributed Semantic
Web Data Management in HBase and MySQL Cluster. IEEE CLOUD, 2011

NICTA Copyright 2012 From imagination to impact

Tutorial Overview
Session 1

 XQuery Overview – Sherif
 SPARQL Overview – Axel
 XSPARQL: a combined language – Axel
 Compression formats for XML+RDF: EXI+HDT – Sherif

Session 2
 XQuery implementations – Sherif
 SPARQL implementations – Sherif
 XSPARQL implementations – Axel

 (optional) Compression formats for XML+RDF: EXI+HDT – Sherif

 Q/A - Discussion

NICTA Copyright 2012 From imagination to impact

XML
Compression

NICTA Copyright 2012 From imagination to impact

XML Compression

NICTA Copyright 2012 From imagination to impact

XML Compressors

NICTA Copyright 2012 From imagination to impact

XML Compressors

•  General Text Compressors: Since XML data are stored as text files, these
compressors use the traditional general purpose text compression tools.
They are XML-Blind, i.e. they treat XML documents as usual plain text
documents and thus apply the traditional text compression techniques.

•  XML Conscious Compressors: This group of compressors are designed
to take the advantage of the awareness of the XML document structure in
order to achieve better compression ratios over the general text
compressors.

–  Schema dependent compressors: where both of the encoder and decoder must
have access to the document schema information to achieve the compression
process.

–  Schema independent compressors: where the availability of the schema
information is not required to achieve the encoding and decoding processes.

NICTA Copyright 2012 From imagination to impact

XML Compressors

•  Non-Queriable (Archival) XML Compressors: This group of the XML
compressors does not allow any queries to be processed over the
compressed format. The main focus of this group is to achieve the highest
compression ratio. By default, general purpose text compressors belong to
the non-queriable group of compressors.

•  Queriable XML Compressors: This group of the XML compressors allow
queries to be processed over their compressed formats. The compression
ratio of this group is usually worse than that of the archival XML
compressors. However, the main focus of this group is to avoid full
document decompression during query execution.

–  Homomorphic compressors: where the original structure of the XML document is
retained and the compressed format can be accessed and parsed in the same
way of the original format.

–  Non-homomorphic compressors: where the encoding process of the XML
document serrates the structural part from the data part. Therefore, the structure
of the compressed format is different from the structure of the original XML
document.

NICTA Copyright 2012 From imagination to impact

XMill

•  Separates the structure from data and the grouping of the data values
into homogenous containers based on their relative paths in the tree
and their data types.

•  Both of the structural and data value parts of the source XML
document are collected and compressed separately.

•  In the structure part, XML tags and attributes ar encoded in a
dictionary-based fashion before passing it to a back-end general text
compression scheme.

•  In the data part, data values are grouped into homogenous and
semantically related containers according to their path and data type.
Each container is then compressed separately using specialized
compressor that is ideal for the data type of this container.

Hartmut Liefke, Dan Suciu: XMILL: An Efficient Compressor for XML Data. SIGMOD, 2000

NICTA Copyright 2012 From imagination to impact

XMill

http://www.cs.washington.edu/homes/suciu/XMLTK/xmill/www/

NICTA Copyright 2012 From imagination to impact

XGrind

•  XML-conscious compression scheme to support querying without the need
for a full decompression of the compressed XML document.

•  XGrind does not separate data from structure. It retains the original structure
of the XML document.

•  Element and attribute names are encoded using a dictionary-based
encoding.

•  Character data is compressed using semi-adaptive Huffman coding.

•  The query processor of XGrind can only handle exact-match and prefix-
match queries on compressed values and partial-match and range queries
on decompressed values.

•  Several operations are not supported by XGrind, for example, non-equality
selections in the compressed domain. Therefore, XGrind cannot perform any
join, aggregation, nested queries, or construct operations.

Pankaj M. Tolani, Jayant R. Haritsa, XGRIND: A query-friendly XML compressor, ICDE, 2002.

NICTA Copyright 2012 From imagination to impact

XML Compressors
•  XMLPPM

–  http://xmlppm.sourceforge.net/

•  XWRT

–  http://sourceforge.net/projects/xwrt/

•  Exalt

–  http://exalt.sourceforge.net/

•  Rngzip

–  http://contrapunctus.net/league/haques/rngzip/

•  Benchmark

–  http://xmlcompbench.sf.net/

NICTA Copyright 2012 From imagination to impact

XML Fast Infoset

•  http://www.w3.org/XML/Binary/

•  An international standard that specifies a binary encoding format for
XML documents.

•  It aims to provide more efficient serialization than the text-based

XML format.

•  The underlying file format is with tag/length/value blocks.

•  Text values of attributes and elements are therefore stored with
length prefixes rather than end delimiters.

•  An index table is built for most strings, which includes element and

attribute names, and their values. This means that the text of
repeated tags and values only appears once per document.

http://java.sun.com/developer/technicalArticles/xml/fastinfoset/

NICTA Copyright 2012 From imagination to impact

XML EXI

•  W3C recommendation for a compact, high performance XML representation

that is designed to work well for a broad range of applications.

•  It aims of improving performance and significantly reducing bandwidth

requirements without compromising efficient use of other resources such as

battery life, code size, processing power, and memory.

•  EXI uses a grammar-driven approach and a straightforward encoding

algorithm and a small set of datatype representations. Therefore, EXI

processors should be relatively simple and can be implemented on devices

with limited capacity.

http://www.w3.org/XML/EXI/

NICTA Copyright 2012 From imagination to impact

XML EXI

•  EXI is schema informed, meaning that it can utilize available schema

information to improve compactness and performance, but does not depend

on accurate, complete or current schemas to work.

•  A program module called an EXI processor is used by application

programs to encode their structured data into EXI streams (EXI stream

encoder) and/or to decode EXI streams to make the structured data

accessible (EXI stream decoder).

•  An EXI stream is an EXI Header followed by an EXI body. The EXI

body carries the content of the document, while the EXI header

communicates the options used for encoding the EXI body

NICTA Copyright 2012 From imagination to impact

XML EXI

•  The building block of an EXI body is an EXI event. An EXI body

consists of a sequence of EXI events representing an EXI
document or an EXI fragment.

•  The EXI events permitted at any given position in an EXI stream are
determined by the EXI grammar. As is the case with XML, the

events occur with nesting pairs of matching start element and end

element events where any pair does not intersect with another
except when it is fully contained in the other.

•  The EXI grammar incorporates knowledge of the XML grammar and
may be augmented and refined using schema information and

fidelity options.

NICTA Copyright 2012 From imagination to impact

XML EXI

•  Each EXI stream begins with an EXI header.

•  The EXI header can identify EXI streams, distinguish EXI streams from text

XML documents, identify the version of the EXI format being used, and

specify the options used to process the body of the EXI stream.

•  The EXI Options field within an EXI header is optional. Its presence is

indicated by the value of the presence bit that follows distinguishing bits.

•  When the alignment option is byte-alignment , padding bits of minimum

length required to make the whole length of the header byte-aligned are

added at the end of the header. On the other hand, there are no padding bits

when the alignment in use is bit-packed.

NICTA Copyright 2012 From imagination to impact

XML EXI

•  An EXI header MAY start with an EXI Cookie which is a four byte

field that serves to indicate that the stream of which it is a part.

•  The Distinguishing Bitsis a two bit field of which the first bit

contains the value 1 and the second bit contains the value 0. It is
used to distinguish EXI streams from text XML documents in the

absence of an EXI cookie.

•  EXI Format Version identifies the version of the EXI format being
used. EXI format version numbers are integers.

•  EXI Options provides a way to specify the options used to encode
the body of the EXI stream (e.g. alignment, compression, schemaid,

blcoksize, valueMaxLength)

NICTA Copyright 2012 From imagination to impact

XML EXI

•  The rules for encoding a series of Events as an EXI stream are very
simple and are driven by a declarative set of grammars that describes
the structure of an EXI stream.

•  Every event in the stream is encoded using the same set of encoding

rules, which are summarized as follows:

1.  Get the next event data to be encoded

2.  If fidelity options indicate this event type is not processed, go to step 1

3.  Use the grammars to determine the event code of the event

4.  Encode the event code followed by the event content

5.  Evaluate the grammar production matched by the event

6.  Repeat until the End Document (ED) event is encoded

NICTA Copyright 2012 From imagination to impact

RDF
Compression

NICTA Copyright 2012 From imagination to impact

Motivation of RDF Compression

•  Large RDF datasets

•  Verbosity and Redundancy.

•  Examples

–  Billion Triple 2010 (~3200M triples, 318 gzipped chunks, ~27GB)

–  Uniprot (~845M, 12 gzipped chunks, ~23GB)

NICTA Copyright 2012 From imagination to impact

Approaches of RDF Compression

Javier D. Fernández, Claudio Gutierrez, Miguel A. Martinzez-Prieto. RDF compression: basic
approaches. WWW, 2010

NICTA Copyright 2012 From imagination to impact

Approaches of RDF Compression

NICTA Copyright 2012 From imagination to impact

Approaches of RDF Compression

•  RDF data at big scale is highly compressible.

•  Dedicated data structures, e.g. adjacency lists, code triples

efficiently and facilitate compression (both string with ppmdi and

integer with Huffman).

•  RDF URIs are prone to efficient compression with standard

techniques, but compression of literals deserve finer approaches.

•  The structure of RDF graphs differs from XML or Web data, hence,

classical approaches such as are not directly applicable.

NICTA Copyright 2012 From imagination to impact

HDT Overview

http://www.rdfhdt.org/

NICTA Copyright 2012 From imagination to impact

HDT Overview

NICTA Copyright 2012 From imagination to impact

DBPedia Example

NICTA Copyright 2012 From imagination to impact

DBPedia Header

NICTA Copyright 2012 From imagination to impact

DBPedia Header

NICTA Copyright 2012 From imagination to impact

HDT Statistics

•  out-degree, deg−(s)
–  the number of triples of G in which s occurs as subject
–  deg−(G), deg−(G)

•  partial out-degree, deg− −(s, p)
–  the number of triples of G in which s occurs as subject and p as

predicate
–  deg− −(G), deg− −(G)

•  labeled out-degree, degL−(s)
–  the number of different predicates (labels) of G with which s is related

as a subject in a triple of G
–  degL−(G), degL−(G)

•  subject-object ratio, αs−o
–  the proportion of common subjects and objects in the graph G
–  αs−o = |SG∩OG| / |SG∪OG|

•  Symmetrically, in-degrees: deg+(o), deg+(G), etc.

NICTA Copyright 2012 From imagination to impact

DBPedia Example

out-degree(page1) = 4
partial out-degree(page1,#label) = 2
labeled out-degree(page1)=3

out-degree(page2) = 2
labeled out-degree(page2)=2

in-degree(page3) = 2
partial in-degree(page3,#broader) = 2
labeled in-degree(page3)=1

NICTA Copyright 2012 From imagination to impact

Dictionary in Practice

•  Subset distinction:

–  (1) Common subject-objects

–  (2) The non common subjects

–  (3) The non common objects

–  (4) Predicates

•  List of strings matching the mapping of the four subsets, in order from
(1) to (4).

–  A reserved character is appended to the end of each string and
each vocabulary to delimit their size.

NICTA Copyright 2012 From imagination to impact

Triples

  Contains the structure of the data after the ID replacement.

NICTA Copyright 2012 From imagination to impact

Compact Triples

6 0 2 0 3 0 4 5 0 1 0 2 0 6 0 2 0 3 0 4 5 0

 3 0 1 2 4 0 3 0 1 2 4 0 3 0 3 0 1 2

6 0 2 0 3 0 4 5 0 1 0 6 0

1 2 6 .
1 3 2 .
2 1 3 .
2 2 4 .
2 2 5 .
2 4 1 .
3 3 2 .

1 2 6; 3 2 .
2 1 3; 2 4, 5; 4 1 .
3 3 2 . Subject	

Grouping	
Adjacency	
Lists	 Splifng	

Predicates:

Objects:

2

Compact	 Triples	

subject 1 subject 2 subject 3

2 6; 3 2 3 0

6 0 2 0

1 3
 3 0 1

2 4, 5;

6 0 2 0 3 0

4 1
3 2

NICTA Copyright 2012 From imagination to impact

Binary Triples

Predicates

Objects

Sp

Bp

So

Bo

2 3

Bitsequence-‐based	
reorganizaRon	

Predicates:

Objects:

2 3 0 1 2 4 0 3 0

6 0 2 0 3 0 4 5 0 1 0 2 0

subject 2 subject 3

Compact	 Triples	

subject 1

Bitmap	 Triples	

2 3 0 1 2 4 0 3 0 0 0 1 2 3 0 1 2 4 0 3 0 2 3 0 1 2 4 0 3 0

 1 2 4

 0 0 0 1

 3

 0 1

6 0 2 0 3 0 4 5 0 1 0 2 0
0 1

6
6 0 2 0 3 0 4 5 0 1 0 2 0

 2 3 4 5 1 2

 0 1 0 1 0 0 1 0 1 0 1

NICTA Copyright 2012 From imagination to impact

HDT Bitmap Triples Compression

Text compression:
gzip, bz2, PPM

specific compression:
Huffman (S), RRR (B)

HDT-Plain HDT-Compress

Javier D. Fernández, Claudio Gutierrez, Miguel A. Martinzez-Prieto. : Compact Representation of Large RDF
Data Sets for Publishing and Exchange. ISWC, 2010

NICTA Copyright 2012 From imagination to impact

RDF
Compression

NICTA Copyright 2012 From imagination to impact

Tutorial Overview
Session 1

 XQuery Overview – Sherif
 SPARQL Overview – Axel
 XSPARQL: a combined language – Axel

Session 2
 XQuery implementations – Sherif
 SPARQL implementations – Sherif
 XSPARQL implementations – Axel

 (optional) Compression formats for XML+RDF: EXI+HDT – Sherif

 Q/A - Discussion

