
Universidad Rey Juan Carlos
Tulipan s/n

28933, Móstoles, Madrid
ESPAÑA

http://www.ia.escet.urjc.es/

GIA – GRUPO DE INTELIGENCIA ARTIFICIAL

SPARQL RULES!

Axel Polleres

GIA TECHNICAL REPORT 2006-11-28

NOVEMBER 2006

GIA – GRUPO DE INTELIGENCIA ARTIFICIAL

GIA TECHNICAL REPORT

GIA TECHNICAL REPORT 2006-11-28, NOVEMBER 2006

SPARQL RULES!

Axel Polleres
Universidad Rey Juan Carlos, Madrid, Spain

Abstract. As the data and ontology layers of the Semantic Web stack have achieved a certain level of maturity
in standard recommendations such as RDF and OWL, the current focus lies on two related aspects. On the
one hand, the definition of a suitable query language for RDF, SPARQL, seems to be close to candidate
recommendation status within the W3C. The establishment of the rules layer on top of the existing stack on the
other hand marks the next step to be taken, where especially languages with their roots in Logic Programming
and Deductive Databases are receiving considerable attention. The purpose of this paper is threefold. First,
we discuss the formal semantics of SPARQL extending recent results in several ways. Second, we provide
translations from SPARQL to Datalog with stratified negation as failure. Third, we propose some useful and
easy to implement extensions of SPARQL, based on this translation. As it turns out, the combination serves for
direct implementations of SPARQL on top of existing rules engines as well as a basis for more general rules
and query languages on top of RDF. A prototype implementation is available for evaluation of our approach.

∗This report is an extended version of the paper titled “From SPARQL to Rules (and back)” to appear in WWW2007. It is a slight
update of the original report published at http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf
on 2006-11-28 with minor typo fixes and encompasses reviewer comments for the conference version.

Copyright c© 2006 by the author

GIA TR 2006-11-28 2

1 Introduction
After the data and ontology layers of the Semantic Web stack have achieved a certain level of maturity in standard
recommendations such as RDF and OWL, the query and the rules layers seem to be the next building-blocks to be
finalized. For the first part, SPARQL [21], W3C’s proposed query language seems to be close to recommendation,
though the Data Access working group is still struggling with defining aspects such as a formal semantics or layering
on top of OWL and RDFS. As for the second part, the RIF working group [25], who is responsible for the rules layer,
is just producing first concrete results. Besides aspects like business rules exchange or reactive rules, deductive rules
languages on top of RDF and OWL are of special interest to the RIF group. One such deductive rules language is
Datalog, which has been successfully applied in areas such as deductive databases and thus might be viewed as a
query language itself. Let us briefly recap our starting points:

Datalog and SQL Analogies between Datalog and RDBMS query languages such as SQL are well-known and -
studied. Both formalisms cover UCQ (unions of conjunctive, or select-project-join queries). Both can express set
difference, by the keyword MINUS in SQL and using nonmonotonic negation (aka negation as failure) in a slightly
generalized form of pure Datalog.

Datalog adds recursion, particularly unrestricted recursion involving nonmonotonic negation (aka unstratified
negation as failure).

Still, SQL is often viewed to be more powerful in several respects: On the one hand, the lack of recursion has been
partly solved in the SQL standard’s 1999 version [23] with the introduction of recursive views which may involve
stratified negation. On the other hand, aggregates or external function calls are missing in pure Datalog.

However, also developments on the Datalog side are evolving and with recent extensions of Datalog towards
Answer Set Programming (ASP) – a logic programming paradigm extending and building on top of Datalog – lots
of these issues have been solved, for instance by defining a declarative semantics for aggregates [11] or external
predicates [10, 4].

The Semantic Web rules layer Remarkably, logic programming dialects such as Datalog with nonmonotonic nega-
tion which are covered by Answer Set Programming are often viewed as a natural basis for the Semantic Web rules
layer [9]. Current ASP systems offer extensions for retrieving RDF data and querying OWL knowledge bases from
the Web [10]. Particular concerns in the Semantic Web community exist with respect to adding rules including non-
monotonic negation [3] which involve a form of closed world reasoning on top of RDF and OWL which both adopt an
open world assumption. Recent proposals for solving this issue suggest a “safe” use of negation as failure over finite
contexts only for the Web which coined the term scoped negation [25, 20].

The Semantic Web query layer – SPARQL Since we base our considerations in this paper on the assumption
that similar correspondences as between SQL and Datalog can be established for SPARQL, we have to observe that
SPARQL inherits a lot from SQL, but there also remain substantial differences. On the one hand, SPARQL does not
deal with nested queries or recursion, a detail which is indeed surprising by the fact that SPARQL is a graph query
language on RDF where, typical recursive queries such as transitive closure of a property might seem very useful.
Likewise, aggregation (such as count, average, etc.) of object values in RDF triples which might appear useful have
not yet been included in the current standard. On the other hand, subtleties like blank nodes (aka bNodes), need to be
taken into account, optional graph patterns, which have their counterpart (to some extent only, as we will see) in outer
joins in SQL or relational algebra, are not straightforwardly translatable to Datalog, etc.

The goal of this paper is to shed light on the actual relation between declarative rules languages such as Datalog
and SPARQL, and by this also provide valuable input for the currently ongoing discussions on the Semantic Web rules
layer, in particular its integration with SPARQL, taking the likely direction into account that LP style rules languages
will play a significant role in this context.

Although the SPARQL specification does not seem 100% stable at the current point, just having taken a step back
from candidate recommendation to working draft, we do not think that it is too early for this exercise, since, as we will

GIA TR 2006-11-28 3

see, we gain valuable insights and positive side effects by our investigation. More precisely, the contributions of the
present work are:

• We refine and extend a recent proposal to formalize the semantics of SPARQL from Pérez et al. [18], presenting
three variants, namely c-joining, s-joining and b-joining semantics where the latter coincides with [18], and can
thus be considered normative. We further discuss how aspects such compositionality, or idempotency of joins
are treated in these semantics.

• Based on the three semantic variants, we provide translations from a large fragment of SPARQL queries to
Datalog, which give rise to implementations of SPARQL on top of existing engines.

• We provide some straightforward extensions of SPARQL such as a set difference operator MINUS, and nesting
of ASK queries in FILTER expressions.

• Finally, we discuss an extension towards recursion by allowing bNode-free-CONSTRUCT queries as part of
the query dataset, which may be viewed as a light-weight, recursive rule language on top of of RDF.

The remainder of this paper is structured as follows: In Sec. 2 we first overview SPARQL, discuss some issues in
the language (Sec. 2.1) and then define its formal semantics (Sec. 2.2). After introducing a general form of Datalog
with negation as failure under the answer set semantics in Sec. 3, we proceed with the translations of SPARQL to
Datalog in Sec. 4. We discuss our proposed language extensions and the use SPARQL as a rules language itself in
Sec. 5. We point to a prototype implementation available for evaluation of our appraach in Sec. 6 before we conclude
in Sec. 7. An appendix contains translated logic programs for all sample queries mentioned throughout the paper in
order to exemplify the translation.

2 RDF and SPARQL
In examples, we will subsequently refer to the two RDF graphs in Fig. 1 which give some information about Bob and
Alice. Such information about persons is common in so-called FOAF1 files which are gaining popularity to describe
personal data on the Web. Similarities with existing examples in [21] are on purpose. We assume the two RDF graphs
given in TURTLE [2] notation and accessible via the IRIs ex.org/bob and alice.org2

Graph: ex.org/bob
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix bob: <ex.org/bob#> .

<ex.org/bob> foaf:maker :a.
:a a foaf:Person ; foaf:name "Bob";

foaf:knows :b.

:b a foaf:Person ; foaf:nick "Alice".
<alice.org/> foaf:maker :b

Graph: alice.org

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix alice: <alice.org#> .

alice:me a foaf:Person ; foaf:name "Alice" ;
foaf:knows :c.

:c a foaf:Person ; foaf:name "Bob" ;
foaf:nick "Bobby".

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT?Y ?X
FROM <alice.org>
FROM <ex.org/bob>
WHERE { ?Y foaf:name ?X .}

?X ?Y
”Bob” :a
”Bob” :c
”Alice” alice.org#me

Figure 1: Two RDF graphs in TURTLE notation and a simple SPARQL query.

We assume the pairwise disjoint, infinite sets I , B, L and V ar, which denote IRIs, Blank nodes, RDF literals, and
variables respectively. In this paper, an RDF Graph is then a finite set, of triples from I ∪ B ∪ L × I × I ∪ B ∪ L,3

1see http://www.foaf-project.org/
2For reasons of legibility and conciseness, we normally omit the leading ’http://’ or other schema identifiers in IRIs in this paper.
3Following SPARQL, we are slightly more general than the original RDF specification in that we allow literals in subject positions.

GIA TR 2006-11-28 4

dereferenceable by an IRI. A SPARQL query is a quadruple Q = (V, P, DS, SM), where V is a result form, P is a
graph pattern, DS is a dataset, and SM is a set of solution modifiers. We refer to [21] for syntactical details and will
explain these in the following as far as necessary. In this paper, we will ignore solution modifiers mostly, thus we will
usually write queries as triples Q = (V, P, DS), and will use the syntax for graph patterns introduced below.

Result Forms Since we will, to a large extent, restrict ourselves to SELECT queries, it is sufficient for our purposes
to describe result forms by sets variables. Other result forms will be discussed in Sec. 5. For instance, let Q =
(V, P, DS) denote the query from Fig. 1, then V = {?X, ?Y }. Query results in SPARQL are given by partial, i.e.
possibly incomplete, substitutions of variables in V by RDF terms. In traditional relational query languages, such
incompleteness is usually expressed using null values. Using such null values we will write solutions as tuples where
the order of columns is determined by lexicographically ordering the variables in V . Given a set of variables V , let V
denote the tuple obtained from lexicographically ordering V .

The query from Fig. 1 with result form V = (?X, ?Y) then has solution tuples (”Bob”, :a), (”Alice”, alice.org#me),
(”Bob”, :c). We write substitutions in sqare brackets, so these tuples correspond to the substitutions [?X → ”Bob”,
?Y → :a], [?X → ”Alice”, ?Y → alice.org#me], and [?X → ”Bob”, ?Y → :c], respectively.

Graph Patterns We follow the recursive definition of graph patterns P from [18]:

• a tuple (s, p, o) is a graph pattern where s, o ∈ I ∪ L ∪ V ar and p ∈ I ∪ V ar.4

• if P and P ′ are graph patterns then (P AND P ′), (P OPT P ′), (P UNION P ′), (P MINUS P ′) are graph
patterns.5

• if P is a graph pattern and i ∈ I ∪ V ar, then (GRAPH i P) is a graph pattern.

• if P is a graph pattern and R is a filter expression then (P FILTER R) is a graph pattern.

For any pattern P , we denote by vars(P) the set of all variables occurring in P .
As atomic filter expression, SPARQL allows the unary predicates BOUND, isBLANK, isIRI, isLITERAL, binary

equality predicates ’=’ for literals, and other features such as comparison operators, data type conversion and string
functions which we omit here, see [21, Sec. 11.3] for details. Complex filter expressions can be built using the
connectives ’¬’,’∧’,’∨’ and auxiliary parentheses.

Datasets The dataset DS = (G, {(g1, G1), . . . (gk, Gk)}) of a SPARQL query is defined by a default graph G plus
a set of named graphs, i.e. pairs of IRIs and corresponding graphs. Without loss of generality (there are other ways
to define the dataset such as in a SPARQL protocol query), we assume G given as the merge of the graphs denoted
by the IRIs given in a set of FROM and FROM NAMED clauses. For instance, the query from Fig. 1 refers to the
dataset which consists of the default graph obtained from merging alice.org] ex.org/bob plus an empty set
of named graphs.

The relation between names and graphs in SPARQL is defined solely in terms of that the IRI defines a resource
which is represented by the respective graph. In this paper, we assume that the IRIs represent indeed network-
accessible resources where the respective RDF-graphs can be retrieved from. This view has also be taken e.g. in [20].
Particularly, this treatment is not to be confused with so-called named graphs in the sense of [5]. We thus identify each
IRI with the RDF graph available at this IRI and each set G of IRIs with the graph merge [15] over the graphs acces-
sible at the respective IRIs in this set G. This allows us to identify the dataset by a pair of sets of IRIs DS = (G, Gn)
with G = {d1, . . . , dn} and Gn = {g1, . . . , gk} denoting the (merged) default graph and the set of named graphs,
respectively. Hence, the following set of clauses

4We do not consider bNodes in patterns as these can be semantically equivalently replaced by variables in graph patterns [8].
5Note that AND and MINUS are not designated keywords in SPARQL, but we use them here for reasons of readability and in order to keep with

the operator style definition of [18]. MINUS is syntactically not present at all, but we will suggest a syntax extension for this particular keyword in
Sec. 5.

GIA TR 2006-11-28 5

FROM <ex.org/bob>
FROM NAMED <alice.org>

defines the dataset DS = ({ex.org/bob}, {alice.org}).

2.1 Assumptions and Issues
In this section we will discuss some important issues about the current specification, and how we will deal with them
here.

Assumptions and Issues about the Dataset. Note that the default graph if specified by name in a FROM clause is
not counted among the named graphs automatically [21, section 8, definition 1]. An unbound variable in the GRAPH
directive, means any of the named graphs in DS, but does NOT necessarily include the default graph.

Example 2.1 This issue becomes obvious in the following query with dataset DS = ({ex.org/bob}, ∅) which has
an empty solution set.

SELECT ?N WHERE {?G foaf:maker ?M .
GRAPH ?G { ?X foaf:name ?N } }

We will sometimes find the following assumption convenient to avoid such arguably unintuitive effects:

Definition 2.1 (Dataset closedness assumption) Given a dataset DS = (G, Gn), Gn implicitly contains (i) all graphs
mentioned in G and (ii) all IRIs mentioned explicitly in the graphs corresponding to G.

Under this assumption, the previous query has both (”Alice”) and (”Bob”) in its solution set.

Assumptions and Issues about Filter expressions. Some more remarks are in place concerning FILTER expres-
sions. According to the SPARQL specification “Graph pattern matching creates bindings of variables [where] it is
possible to further restrict solutions by constraining the allowable bindings of variables to RDF Terms [with FILTER
expressions].” However, it is not clearly specified how to deal with filter constraints referring to variables which do
not appear in simple graph patterns. In this paper, for graph patterns of the form (P FILTER R) we tacitly assume
safe filter expressions, i.e. that all variables used in a filter expression R also appear in the corresponding pattern
P . This corresponds with the notion of safety in Datalog (see Sec.3), where the built-in predicates (which obviously
correspond to filter predicates) do not suffice to safe unbound variables.

Moreover, the specification defines errors to avoid mistyped comparisons, or evaluation of built-in functions over
unbound values, i.e. “any potential solution that causes an error condition in a constraint will not form part of the final
results, but does not cause the query to fail.” These errors propagate over the whole FILTER expression, also over
negation, as shown by the following example.

Example 2.2 Assuming the dataset does not contain triples for the foaf : dummy property, the example query

SELECT ?X
WHERE { {?X a foaf:Person .

OPTIONAL { ?X foaf:dummy ?Y . } }
FILTER (¬(isLITERAL (?Y))) }

would discard any solution for ?X, since the unbound value for ?Y causes an error in the isLITERAL expression and
thus the whole FILTER expression returns an error.

We will take special care for these errors, when defining the semantics of FILTER expressions later on.

GIA TR 2006-11-28 6

Assumptions about bNodes. We do not consider bNodes in query patterns as these can be semantically equivalently
replaced by variables in graph patterns [8]. However, bNodes may appear in the Dataset, and thus in query answers.
Note that different graphs in the dataset might use the same identifiers for bNodes. For simplicity, we assume that
such ambiguities are already resolved, i.e. that different graphs in the dataset use different bNode identifiers. By
this assumption, we may treat bNode identifiers largely like normal constants and we do not need to rename bNodes
identifiers in query results.

2.2 Formal Semantics of SPARQL
The semantics of SPARQL is still not formally defined in its current version. This lack of formal semantics has
been tackled by a recent proposal of Pérez et al. [18]. We will base on this proposal, but suggest three variants thereof,
namely (a) bravely joining (b-joining), (b) cautiously-joining (c-joining), and (c) strictly-joining (s-joining) semantics.
Particularly, our definitions vary from [18] in the way we define joining unbound variables (represented by the distinct
constant null in our approach). Moreover, we will refine their notion of FILTER satisfaction in order to deal with error
propagation properly.

We denote by Tnull the union I ∪ B ∪ L ∪ {null}, where null is a dedicated constant denoting the unknown value
not appearing in any of I,B, or L, how it is commonly introduced when defining outer joins in relational algebra.

A substitution θ from V ar to Tnull is a partial function θ : V ar → Tnull. We write substitutions in postfix notation:
For a triple pattern t = (s, p, o) we denote by tθ the triple (sθ, pθ, oθ) obtained by applying the substitution to all
variables in t. The domain of θ, denoted by dom(θ), is the subset of V ar where θ is defined. For a substitution θ and
a set of variables D ⊆ V ar we define the substitution θD with domain D as follows:

xθD =
{

xθ if x ∈ dom(θ) ∩D
null if x ∈ D \ dom(θ)

Let θ1 and θ2 be substitutions, then θ1 ∪ θ2 is the substitution obtained as follows:

x(θ1 ∪ θ2) =


xθ1 if xθ1 defined and xθ2 undefined
else: xθ1 if xθ1 defined and xθ2 = null
else: xθ2 if xθ2 defined
else: undefined

Thus, in the union of two substitutions defined values in one take precedence over null values the other substitution.
For instance, given the substitutions θ1 = [?X → ”Alice”, ?Y → :a, ?Z → null] and θ2 = [?U → ”Bob”, ?X →
”Alice”, ?Y → null] we get: θ1 ∪ θ2 = [?U → ”Bob”, ?X → ”Alice”, ?Y → :a, ?Z → null]

Now, as opposed to [18], we define three notions of compatibility between substitutions:

• Two substitutions θ1 and θ2 are bravely compatible (b-compatible) when for all x ∈ dom(θ1) ∩ dom(θ2) either
xθ1 = null or xθ2 = null or xθ1 = xθ2 holds. i.e., when θ1 ∪ θ2 is a substitution over dom(θ1) ∪ dom(θ2).

• Two substitutions θ1 and θ2 are cautiously compatible (c-compatible) when they are b-compatible and for all
x ∈ dom(θ1) ∩ dom(θ2) it holds that xθ1 = xθ2.

• Two substitutions θ1 and θ2 are strictly compatible (s-compatible) when they are c-compatible and for all x ∈
dom(θ1) ∩ dom(θ2) it holds that x(θ1 ∪ θ2) 6= null.

Analogously to [18] we define join, union, difference, and outer join between two sets of substitutions Ω1 and Ω2

over domains D1 and D2, respectively, all except union parameterized by x ∈ {b,c,s}:

Ω1 ./x Ω2 = {θ1 ∪ θ2 | θ1 ∈ Ω1, θ2 ∈ Ω2, are x-compatible}
Ω1 ∪ Ω2 = {θ | ∃θ1 ∈ Ω1 with θ = θD1∪D2

1 or
∃θ2 ∈ Ω2 with θ = θD1∪D2

2 }
Ω1 −x Ω2 = {θ ∈ Ω1 | for all θ2 ∈ Ω2, θ and θ2 not x-compatible}
Ω1A./x Ω2 = (Ω1 ./x Ω2) ∪ (Ω1 −x Ω2)

GIA TR 2006-11-28 7

The semantics of a graph pattern P over dataset DS = (G, Gn), can now be defined recursively by the evaluation
function returning sets of substitutions.

Definition 2.2 (Evaluation, extends [18, Def. 2]) Let t = (s, p, o) be a triple pattern, P, P1, P2 graph patterns, and
DS = (G, Gn) a dataset, then the x-joining evaluation [[·]]xDS is defined as follows:

[[t]]xDS = {θ | dom(θ) = vars(P) and tθ ∈ G}
[[P1 AND P2]]xDS = [[P1]]xDS ./x [[P2]]xDS

[[P1 UNION P2]]xDS = [[P1]]xDS ∪ [[P2]]xDS

[[P1 MINUS P2]]xDS = [[P1]]xDS −x [[P2]]xDS

[[P1 OPT P2]]xDS = [[P1]]xDS A./x [[P2]]xDS

[[GRAPH i P]]xDS = [[P]]x(i,∅), for i ∈ Gn

[[GRAPH v P]]xDS = {θ ∪ [v → g] | g ∈ Gn and θ ∈ [[P [v → g]]]x(g,∅)}, for v ∈ V ar

[[P FILTER R]]xDS = {θ ∈ [[P]]xDS | Rθ = >}

Let R be a FILTER expression, u, v ∈ V ar, c ∈ I ∪ B ∪ L. The valuation of R on a substitution θ, written Rθ
takes one of the three values {>,⊥, ε}6 and is defined as follows.
Rθ = >, if:

(1) R = BOUND(v) with v ∈ dom(θ) ∧ vθ 6= null;
(2) R = isBLANK(v) with v ∈ dom(θ) ∧ vθ ∈ B;
(3) R = isIRI(v) with v ∈ dom(θ) ∧ vθ ∈ I;
(4) R = isLITERAL(v) with v ∈ dom(θ) ∧ vθ ∈ L;
(5) R = (v = c) with v ∈ dom(θ) ∧ vθ = c;
(6) R = (u = v) with u, v ∈ dom(θ) ∧ uθ = vθ ∧ uθ 6= null;
(7) R = (¬R1) with R1θ = ⊥;
(8) R = (R1 ∨R2) with R1θ = > ∨ R2θ = >;
(9) R = (R1 ∧R2) with R1θ = > ∧ R2θ = >.

Rθ = ε, if:

(1) R = isBLANK(v),R = isIRI(v),R = isLITERAL(v),
or R = (v = c) with v 6∈ dom(θ) ∨ vθ = null;

(2) R = (u = v) with u 6∈ dom(θ) ∨ uθ = null
∨ v 6∈ dom(θ) ∨ vθ = null;

(3) R = (¬R1) and R1θ = ε;
(4) R = (R1 ∨R2) and (R1θ 6= > ∧ R2θ 6= >) ∧

(R1θ = ε ∨ R2θ = ε);
(5) R = (R1 ∧R2) and R1θ = ε ∨ R2θ = ε.

Rθ = ⊥ otherwise.

We will now exemplify the three different semantics defined above, namely bravely joining (b-joining), cautiously
joining (c-joining), and strictly-joining (s-joining) semantics. When taking a closer look to the AND and MINUS
operators, one will realize that all three semantics take a slightly differing view only when joining null. Indeed, the
AND operator behaves as the traditional natural join operator ./ in relational algebra, when no null values are involved.

Example 2.3 Take for instance, DS = ({ex.org/bob, alice.org}, ∅) and

P = ((?X, name, ?Name) AND (?X, knows, ?Friend)).

When viewing each solution set as a relational table with variables denoting attribute names, we can write:

6> stands for “true”, ⊥ stands for “false” and ε stands for errors, see [21, Sec. 11.3] and Example 2.2 for details.

GIA TR 2006-11-28 8

?X ?Name
:a ”Bob”

alice.org#me ”Alice”
:c ”Bob”

./
?X ?Friend
:a :b

alice.org#me :c

=
?X ?Name ?Friend
:a ”Bob” :b

alice.org#me ”Alice” :c

Differences between the three semantics appear when joining over null-bound variables, as shown in the next example.

Example 2.4 Let DS be as in Example 2.3 and assume the following query which might be considered a naive attempt
to ask for pairs of persons ?X1, ?X2 who share the same name and nickname where both, name and nickname are
optional:

P = (((?X1, a, Person) OPT (?X1, name, ?N)) AND
((?X2, a, Person) OPT (?X2, nick, ?N)))

Again, we consider the tabular view of the resulting join:

?X1 ?N
:a ”Bob”
:b null
:c ”Bob”

alice.org#me ”Alice”

./x

?X2 ?N
:a null
:b ”Alice”
:c ”Bobby”

alice.org#me null

Now, let us see what happens when we evaluate the join ./x with respect to the different semantics. The following
result table lists in the last column which tuples belong to the result of b-, c- and s-join, respectively.

=

?X1 ?N X2
:a ”Bob” :a b
:a ”Bob” alice.org#me b
:b null :a b,c
:b ”Alice” :b b
:b ”Bobby” :c b
:b null alice.org#me b,c
:c ”Bob” :a b
:c ”Bob” alice.org#me b

alice.org#me ”Alice” :a b
alice.org#me ”Alice” :b b,c,s
alice.org#me ”Alice” alice.org#me b

Leaving aside the question whether the query formulation was intuitively broken, we remark that only the s-join would
have the expected result. At the very least we might argue, that the liberal behavior of b-joins might be considered
surprising in some cases. The c-joining semantics acts a bit more cautious in between the two, treating null values as
normal values, only unifiable with other null values.

From the point of view how joins over incomplete relations are treated in common relational database systems, the
s-joining semantics might be considered the intuitive behavior of the join operator above. Another interesting diver-
gence (which would rather suggest to adopt the c-joining semantics) shows up when we consider a simple idempotent
join.

Example 2.5 Let us consider the following single triple dataset DS = ({(alice.org#me, a, Person)}, ∅) and the
following simple query pattern:

P = ((?X, a, Person) UNION (?Y, a, Person))

Clearly, this pattern, has the solution set

[[P]]xDS = {(alice.org#me, null), (null, alice.org#me)}

under all three semantics. Somewhat surprisingly however, P ′ = (P AND P) has different solution sets for the
different semantics. First, [[P ′]]cDS = [[P]]xDS , but [[P ′]]sDS = ∅, since null values are not compatible under the
s-joining semantics. Finally,

GIA TR 2006-11-28 9

[[P ′]]bDS ={(alice.org#me, null), (null, alice.org#me),
(alice.org#me, alice.org#me)}

As shown by this example, under the reasonable assumption, that the join operator is idempotent, i.e., (P ./ P) ≡
P , only the c-joining semantics behaves correctly.

However, the brave b-joining behavior is advocated by the current SPARQL document, and we might also think
of examples where this obviously makes a lot of sense. Especially, when considering no explicit joins, but the implicit
joins within the OPT operator:

Example 2.6 This example is a slight variant of a query from [6]. Let DS = ({ex.org/bob, alice.org}, ∅) and
assume the following query for all persons and some name for these persons, where preferably the foaf : name is
taken, and, if not specified, the foaf : nick.

P = ((((?X, a, Person) OPT (?X, name, ?XNAME))
OPT (?X, nick, ?XNAME))

Only [[P]]bDS contains the expected solution (:b, ”Alice”) for the bNode :b.

All three semantics may be considered as variations of the original definitions in [18], for which the authors
proved complexity results and various desirable features, such as semantics-preserving normal form transformations
and compositionality. The following proposition shows that all these results carry over to the normative b-joining
semantics:

Proposition 2.1 Given a dataset DS and a pattern P which does not contain GRAPH patterns, the solutions of
[[P]]DS as defined in [18] and [[P]]bDS are in one-to-one correspondence.

Proof: Given DS and P each substitution θ obtained by evaluation [[P]]bDS can be reduced to a substitution θ′

obtained from the evaluation [[P]]DS in [18] by dropping all mappings of the form v → null from θ. Likewise, each
substitution θ′ obtained from [[P]]DS can be extended to a substitution θ = θ′vars(P) for [[P]]bDS . 2

Following the definitions from the SPARQL specification, in fact, the b-joining semantics is the only admissible
definition, which is why [18] does not consider null values at all. There are still advantages for gradually defining
alternatives towards traditional treatment of joins involving nulls. On the one hand, as we have seen in the examples
above, the brave view on joining unbound variables might have partly surprising results, on the other hand, as we will
see, the c- and s-joining semantics allow for a more efficient implementation in terms of Datalog rules.

Let us now take a closer look on some properties of the three defined semantics.

Compositionality and Equivalences

As shown in [18], some implementations have a non-compositional semantics, leading to undesired effects such as
non-commutativity of the join operator, etc. A semantics is called compositional if for each P ′ sub-pattern of P the
result of evaluating P ′ can be used to evaluate P . Obviously, all three the c-, s- and b-joining semantics defined here
retain this property, since all three semantics are defined recursively, and independent of the evaluation order of the
sub-patterns.

The following proposition summarizes equivalences which hold for all three semantics, showing some interesting
additions to the results of Pérez et al.

Proposition 2.2 (extends [18, Prop. 1]) The following equivalences hold or do not hold in the different semantics as
indicated after each law:

(1) AND, UNION are associative and commutative. (b,c,s)
(2) (P1 AND (P2 UNION P3))

≡ ((P1 AND P2) UNION (P1 AND P3)). (b)

GIA TR 2006-11-28 10

(3) (P1 OPT (P2 UNION P3))
≡ ((P1 OPT P2) UNION (P1 OPT P3)). (b)

(4) ((P1 UNION P2) OPT P3)
≡ ((P1 OPT P3) UNION (P2 OPT P3)). (b)

(5) ((P1 UNION P2) FILTER R)
≡ ((P1 FILTER R) UNION (P2 FILTER R)). (b,c,s)

(6) AND is idempotent, i.e. (P AND P) ≡ P . (c)

Proof: [Sketch.] (1-5) for the b-joining semantics are proven in [18], so we only consider the other semantics in
more detail.

(1): for c-joining and s-joining follows straight from the definitions.
(2)-(4): the substitution sets [[P1]]c,s = {[?X → a, ?Y → b]}, [[P2]]c,s = {[?X → a, ?Z → c]}, [[P3]]c,s =

{[?Y → b, ?Z → c]} provide counterexamples for c-joining and s-joining semantics for all three equivalences (2)-(4).
(5): The semantics of FILTER expressions and UNION is exactly the same for all three semantics. Thus, the result

for the b-joining semantics carries over to all three semantics.7

(6): follows from the observations in Example 2.5. 2

Ideally, we would like to identify a subclass of programs, where the three semantics coincide. Obviously, this is the
case for any query involving neither UNION nor OPT operators. Pérez et al. [18] define a bigger class of programs,
including “well-behaving” optional patterns:

Definition 2.3 ([18, Def. 4]) A UNION-free graph pattern P is well-designed if for every occurrence of a sub-pattern
P ′ = (P1 OPT P2) of P and for every variable v occurring in P , the following condition holds: if v occurs both in
P2 and outside P ′ then it also occurs in P1.

As may be easily verified by the reader, neither Example 2.4 nor Example 2.6, which are both UNION-free, satisfy
the well-designedness condition. Since in the general case the equivalences for Prop. 2.2 do not hold, we also need to
consider nested UNION patterns as a potential source for null bindings which might affect join results. We extend the
notion of well-designedness, which direclty leads us to another correspondence in the subsequent proposition.

Definition 2.4 A graph pattern P is well-designed if the condition from Def. 2.3 holds and additionally for every
occurrence of a sub-pattern P ′ = (P1 UNION P2) of P and for every variable v occurring in P ′, the following
condition holds: if v occurs outside P ′ then it occurs in both P1 and P2.

Proposition 2.3 On well-designed graph patterns the c-, s-, and b-joining semantics coincide.

Proof: [Sketch.] Follows directly from the observation that all variables which are re-used outside P ′ must be bound
to a value unequal to null in P ′ due to the well-designedness condition, and thus cannot generate null bindings which
might carry over to joins. 2

Likewise, we can identify “dangerous” variables in graph patterns, which might cause semantic differences:

Definition 2.5 Let P ′ a sub-pattern of P of either the form P ′ = (P1OPT P2) or P ′ = (P1UNION P2). Any variable
v in P ′ which violates the well-designedness-condition is called possibly-null-binding in P .

Note that, so far we have only defined the semantics in terms of a pattern P and dataset DS, but not yet taken the
result form V of query Q = (V, P,DS) into account.

We now formally define solution tuples that were informally introduced in Sec. 2. Recall that by V we denote
the tuple obtained from lexicographically ordering a set of variables in V . The notion V [V ′ → null] means that, after
ordering V all variables from a subset V ′ ⊆ V are replaced by null.

7We remark here, that transformation (5) possibly has problematic effects with respect to the assumption of safe filter expressions. This however
only affects the translation in Sec. 4 and not the overall semantics.

GIA TR 2006-11-28 11

Definition 2.6 (Solution Tuples) Let Q = (V, P, DS) be a SPARQL query, and θ a substitution in [[P]]xDS , then we
call the tuple V [(V \ vars(P)) → null]θ a solution tuple of Q with respect to the x-joining semantics.

Let us remark at this point, that as for the discussion of intuitivity of the different join semantics discussed in
Examples 2.4–2.6, we did not yet consider combinations of different join semantics, e.g. using b-joins for OPT and
c-joins for AND patterns. We leave this for further work.

3 Datalog and Answer Sets
In this paper we will use a very general form of Datalog commonly referred to as Answer Set Programming (ASP), i.e.
function-free logic programming (LP) under the answer set semantics [1, 13]. ASP is widely proposed as a useful tool
for various problem solving tasks in e.g. Knowledge Representation and Deductive databases. ASP extends Datalog
with useful features such as negation as failure, disjunction in rule heads, aggregates [11], external predicates[10], etc.
8

Let Pred, Const, V ar, exPr be sets of predicate, constant, variable symbols, and external predicate names,
respectively. Note that we assume all these sets except Pred and Const (which may overlap), to be disjoint. In
accordance with common notation in LP and the notation for external predicates from [9] we will in the following
assume that Const and Pred comprise sets of numeric constants, string constants beginning with a lower case letter,
or ’"’ quoted strings, and strings of the form 〈quoted-string〉ˆˆ〈IRI〉, 〈quoted-string〉@〈valid-lang-tag〉,9 V ar is the
set of string constants beginning with an upper case letter. Given p ∈ Pred an atom is defined as p(t1, . . . , tn), where
n is called the arity of p and t1, . . . , tn ∈ Const ∪ V ar.

Moreover, we define a fixed set of external predicates exPr = {rdf , isBLANK, isIRI , isLITERAL, =, != }
All external predicates have a fixed semantics and fixed arities, distinguishing input and output terms. The atoms
isBLANK[c](val), isIRI[c](val), isLITERAL[c](val) test the input term c ∈ Const ∪ V ar (in square brackets)
for being valid string representations of a Blank nodes, IRI References or RDF literals, returning an output value
val ∈ {t, f, e}, representing truth, falsity or an error, following the semantics defined in [21, Sec. 11.3]. For the
rdf predicate we write atoms as rdf [i](s, p, o) to denote that i ∈ Const ∪ V ar is an input term, whereas s, p, o ∈
Const∪V ar are output terms which may be bound by the external predicate. The external atom rdf [i](s, p, o) is true
if (s, p, o) is an RDF triple entailed by the RDF graph which is accessibly at IRI i. For the moment, here we consider
simple RDF entailment [15] only. Finally, we write comparison atoms ’t1 = t2’ and ’t1 != t2’ in infix notation with
t1, t2 ∈ Const ∪ V ar and the obvious semantics of (lexicographic or numeric) (in)equality. Here, for = either t1 or
t2 is an output term, but at least one is an input term, and for != both t1 and t2 are input terms.

Definition 3.1 Finally, a rule is of the form

h :- b1, . . . , bm, not bm+1, . . . not bn. (1)

where h and bi (1 ≤ i ≤ n) are atoms, bk (1 ≤ k ≤ m) are either atoms or external atoms, and not is the symbol for
negation as failure.

We use H(r) to denote the head atom h and B(r) to denote the set of all body literals B+(r)∪B−(r) of r, where
B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}.

The notion of input and output terms in external atoms described above denotes the binding pattern. More precisely,
we assume the following condition which extends the standard notion of safety (cf. [24]) in Datalog with negation:
Each variable appearing in a rule must appear in a non-negated body atom or as an output term of an external atom.

Definition 3.2 A (logic) program Π is defined as a set of safe rules r of the form (1).

8We consider ASP, more precisely a simplified version of ASP with so-called HEX-programs [10] here, since it is up to date the most general
extension of Datalog.

9Actually, for the purpose of this paper, we will disregard language tags and datatype tags, so we will not treat the last two types specially. We
remark that for a full coverage of SPARQL we’d also need to consider variables in language and datatype tags.

GIA TR 2006-11-28 12

The Herbrand base of a program Π, denoted HBΠ, is the set of all possible ground versions of atoms and external
atoms occurring in Π obtained by replacing variables with constants from Const, where we define for our purposes
by Const the union of the set of all constants appearing in Π as well as all the literals, IRIs, and distinct constants for
each blank node occurring in each RDF graph identified10 by one of the IRIs in the (recursively defined) set I , where
I is defined by the recursive closure of all IRIs appearing in Π and all RDF graphs identified by IRIs in I .11 As long
as we assume that the Web is finite the grounding of a rule r, ground(r), is defined by replacing each variable with
the possible elements of HBΠ, and the grounding of program Π is ground(Π) =

⋃
r∈Π ground(r).

An interpretation relative to Π is any subset I ⊆ HBΠ containing only atoms. We say that I is a model of atom
a ∈ HBΠ, denoted I |= a, if a ∈ I. With every external predicate name lg ∈ exPr with arity n we associate an
(n + 1)-ary Boolean function flg (called oracle function) assigning each tuple (I, t1 . . . , tn) either 0 or 1. 12 We
say that I ⊆ HBΠ is a model of a ground external atom a = g[t1, . . . , tm](tm+1, . . . , tn), denoted I |= a, iff
flg(I, t1, . . . , tn) = 1.

The semantics we use here generalizes the answer-set semantics [13]13, and is defined using the FLP-reduct [11],
which is more elegant than the traditional Gelfond-Lifschitz reduct of stable model semantics and ensures minimality
of answer sets also in presence of external atoms.

Let r be a ground rule. We define (i) I|=B(r) iff I |= a for all a ∈ B+(r) and I 6|= a for all a ∈ B−(r), and
(ii) I |= r iff I |= H(r) whenever I |= B(r). We say that I is a model of a program Π, denoted I |= Π, iff I |= r for
all r ∈ ground(Π).

The FLP-reduct [11] of Π with respect to I ⊆ HBΠ, denoted ΠI , is the set of all r ∈ ground(Π) such that
I |= B(r). I ⊆ HBΠ is an answer set of Π iff I is a minimal model of ΠI .

We did not consider further extensions common to many ASP dialects here, namely disjunctive rule heads, strong
negation [13]. We note that for non-recursive programs, i.e. programs where the predicate dependency graph is acyclic,
the answer set is unique. For the pure translation which we will give in Sec. 4 where we will produce such non-
recursive programs from SPARQL queries, we could equally take other semantics such as the well-founded [12]
semantics into account, which coincides with the answer set semantics on non-recursive programs.

4 From SPARQL to Datalog
We are now ready to define a translation from SPARQL to Datalog which can serve straightforwardly to implement
SPARQL within existing rules engines. We start with a translation for c-joining semantics, which we will extend
thereafter towards s-joining and b-joining semantics.

4.1 Translation Πc
Q

Let Q = (V, P,DS), where DS = (G, Gn) as defined above. We translate this query to a logic program Πc
Q defined

as follows.

Πc
Q ={triple(S, P, O, default) :- rdf[d](S, P, O). | d ∈ G}

∪ {triple(S, P, O, g) :- rdf[g](S, P, O). | g ∈ Gn}
∪ τ(V, P, default, 1)

The first two rules serve to import the relevant RDF triples from the dataset into a 4-ary predicate triple. Under the
dataset closedness assumption (see Def. 2.1) we may replace the second rule set, which imports the named graphs,

10By “identified” we mean here that the IRIs denote network accessible resources which correspond to RDF graphs/documents.
11Without loss of generality we may assume the number of accessible IRIs finite.
12The notion of an oracle function reflects the intuition that external predicates compute (sets of) outputs for a particular input, depending on the

interpretation. The dependence on the interpretation is necessary for instance for defining the semantics of external predicates querying OWL [10]
or computing aggregate functions.

13In fact, we use slightly simplified definitions from [9] for so-called HEX-programs, with the sole difference that we restrict ourselves to a fixed
set of external predicates.

GIA TR 2006-11-28 13

τ(V, (s, p, o), D, i) = answeri(V , D) :- triple(s, p, o, D). (1)

τ(V, (P ′ AND P ′′), D, i) = τ(vars(P ′), P ′, D, 2 ∗ i) ∪ τ(vars(P ′′), P ′′, D, 2 ∗ i + 1) ∪
answeri(V , D) :- answer2∗i(vars(P ′), D), answer2∗i+1((vars(P ′′), D). (2)

τ(V, (P ′ UNION P ′′), D, i) = τ(vars(P ′), P ′, D, 2 ∗ i) ∪ τ(vars(P ′′), P ′′, D, 2 ∗ i + 1) ∪
answeri(V [(V \ vars(P ′)) → null], D) :- answer2∗i(vars(P ′), D). (3)
answeri(V [(V \ vars(P ′′)) → null], D) :- answer2∗i+1(vars(P ′′), D). (4)

τ(V, (P ′ MINUS P ′′), D, i) = τ(vars(P ′), P ′, D, 2 ∗ i) ∪ τ(vars(P ′′), P ′′, D, 2 ∗ i + 1) ∪
answeri(V [(V \ vars(P ′)) → null], D) :- answer2∗i(vars(P ′), D), (5)

not answer2∗i′(vars(P ′) ∩ vars(P ′′), D).

answer2∗i′(vars(P ′) ∩ vars(P ′′), D) :- answer2∗i+1(vars(P ′′), D). } (6)

τ(V, (P ′ OPT P ′′), D, i) = τ(V, (P ′ AND P ′′), D, i) ∪ τ(V, (P ′ MINUS P ′′), D, i)

τ(V, (P FILTER R), D, i) = τ(vars(P), P, D, 2 ∗ i) ∪
LT (answeri(V , D) :- answer2∗i(vars(P), D), R.) (7)

τ(V, (GRAPH g P), D, i) = τ(V, P, g, i) for g ∈ V ∪ I

answeri(V , D) :- answeri(V , g), isIRI(g), not g = default. (8)

Alternate rules replacing (5)+(6):

answeri(V [(V \ vars(P ′)) → null], D) :- answer2∗i(vars(P ′), D), not answer2∗i′(vars(P ′), D) (5’)
answer2∗i′(vars(P ′), D) :- answer2∗i(vars(P ′), D), answer2∗i+1(vars(P ′′), D). (6’)

Figure 2: Translation Πc
Q from SPARQL queries semantics to Datalog.

by14:
triple(S, P, O, G) :- rdf[G](S, P, O),HU(G), isIRI(G).

Here, the predicate HU stands for “Herbrand universe”, where we use this name a bit sloppily, with the intention
to cover all the relevant part of C, recursively importing all possible IRIs in order to emulate the dataset closedness
assumption. HU , can be computed recursively over the input triples, i.e.

HU(X) :- triple(X, P,O,D). HU(X) :- triple(S, X, O,D).
HU(X) :- triple(S, P, X, D). HU(X) :- triple(S, P, O, X).

The remaining program τ(V, P, default, 1) represents the actual query translation, where τ is defined recursively
as shown in Fig. 2.

As for FILTER expressions, one might miss details of the translation of complex filter expressions R in Fig. 2:
By LT (·) we mean the set of rules resulting from disassembling complex filter expressions (involving ’¬’,’∧’,’∨’)
according to the rewriting defined by Lloyd and Topor [17] where we have to obey the semantics for errors, following
Definition 2.2. In a nutshell, the rewriting LT − rewrite(·) proceeds as follows: Complex filters involving ¬ are
transformed by standard normal form transformations into negation normal form such that negation only occurs in
front of atomic filter expressions. Note that this step might result in an exponential blowup of the resulting program
size.15 Conjunctions of filter expressions are simply disassembled to conjunctions of body literals, disjunctions are
handled by splitting the respective rule for both alternatives in the standard way. The resulting rules involve possibly
negated atomic filter expressions in the bodies. Here, for v ∈ V the unary predicate BOUND(v) is translated to
v = null, ¬BOUND(v) to v != null. isBLANK(v), isIRI(v), isLITERAL(v) and their negated forms are replaced by
their corresponding external atoms (see Sec. 3) isBLANK[v](t) or isBLANK[v](f), etc., respectively.

The final program Πc
Q implements the c-joining semantics in the following sense:

14The rule would be safe as defined in Sec. 3 even without adding HU(G) to the body. Remember, we assumed the number of accessible IRIs
and thus the extension of the external predicate isIRI finite. However, we defined the dataset closedness assumption as considering the recursive
closure of IRIs occcurring within the dataset, which we emulate by HU .

15Lloyd and Topor can avoid this potential exponential blowup by introducing new auxiliary predicates. However, we cannot do the same trick,
mainly for reasons of preserving safety of external predicates as defined in Sec. 3.

GIA TR 2006-11-28 14

Proposition 4.1 (Soundness and completeness of Πc
Q) For each atom of the form answer1(~s, default) in the unique

answer set M of Πc
Q, ~s is a solution tuple of Q with respect to the c-joining semantics, and all solution tuples of Q are

represented by the extension of predicate answer1 in M .

Without giving a proof, we remark that the result follows if we convince ourselves that τ(V, P,D, i) emulates
exactly the recursive definition of [[P]]xDS . Moreover, together with Proposition 2.3, we obtain soundness and com-
pleteness of ΠQ for b-joining and s-joining semantics as well for well-designed query patterns.

Corollary 4.2 If the graph pattern P is well-designed, the extension of predicate answer1 in the unique answer set
M of Πc

Q represents all and only the solution tuples for Q = (V, P,DS) with respect to the x-joining semantics, for
x ∈ {b, c, s}.

4.2 Generalizing Πc
Q to s-joining and b-joining semantics

Now, in order to obtain a proper translation for arbitrary, not necessarily well-designed patterns, we obviously need
to focus our attention on the possibly-null-binding variables within the query pattern P . Let vnull(P) denote the
possibly-null-binding variables in a (sub)pattern P . We need to consider all rules in Fig. 2 which involve x-joins, i.e.
the rules of the forms (2),(5) and (6). Since rules (5) and (6) do not make this join explicit, we will replace them by
the equivalent rules (5’) and (6’) for the extended translations Πs

Q and Πb
Q, respectively. The “extensions” to s-joining

and b-joining semantics can then be achieved by rewriting the rules (2) and (6’).
The idea is to rename variables and add proper FILTER expressions to these rules in order to realize the b-joining

and s-joining behavior for the variables in VN = vnull(P) ∩ vars(P ′) ∩ vars(P ′′).

4.2.1 Translation Πs
Q

The more restrictive s-joining behavior can be achieved by adding FILTER expressions

Rs = (
∧

v∈VN

BOUND(v))

to the rule bodies of (2) and (6’). The resulting rules are again subject to the LT -rewriting as discussed above for the
rules of the form (7).

This is sufficient to filter out any joins involving null values, thus achieving s-joining semantics, and we denote the
program rewritten that way as Πs

Q.

4.2.2 Translation Πb
Q

Obviously, b-joining semantics is more tricky to achieve, since we now have to relax the allowed joins in order to
allow null bindings to join with any other value. We will again achieve this result by modifying rules (2) and (6’)
where we first do some variable renaming and then add respective FILTER expressions to these rules.

Step 1. We rename each variable v ∈ VN in the respective rule bodies to v′ or v′′, respectively, in order to
disambiguate the occurrences originally from sub-pattern P ′ or P ′′, respectively. That is, for each rule (2) or (6’), we
rewrite the body to:

answer2∗i(vars(P ′)[VN → V ′
N], D), answer2∗i+1(vars(P ′′)[VN → V ′′

N], D).

Step 2. We now add the following FILTER expressions Rb
(2) and Rb

(6′), respectively, to the resulting rule bodies
which “emulate” the relaxed b-compatibility:

Rb
(2) =

∧
v∈V N (((v = v′) ∧ (v′ = v′′)) ∨ ((v = v′) ∧ ¬BOUND(v′′)) ∨

((v = v′′) ∧ ¬BOUND(v′)))
Rb

(6′) =
∧

v∈V N (((v = v′) ∧ (v′ = v′′)) ∨ ((v = v′) ∧ ¬BOUND(v′′)) ∨
((v = v′) ∧ ¬BOUND(v′)))

GIA TR 2006-11-28 15

The rewritten rules are again subject to the LT rewriting. Note that, strictly speaking the filter expression introduced
here does not fulfill the assumption of safe filter expressions, since it creates new bindings for the variable v. However,
these can safely be allowed here, since the translation only creates valid input/output term bindings for the external
Datalog predicate ’=’.

The subtle difference between Rb
(2) and Rb

(6′) lies in the fact that Rb
(2) preferably “carries over” bound values from

v′ or v′′ to v whereas Rb
(6′) always takes the value of v′. The effect of this becomes obvious in the translation of

Example 2.6 in the Appendix.
In a real implementation we could avoid the potential exponential (with respect to |VN |) blowup of the program

size by unfolding the filter expressions in according to the LT rewriting by a cascading definition of predicates joinn

which “emulate” b-joining behavior.

join(X, X, X) :- HU(X). join(X, null, X) :- HU(X). join(null, X,X) :- HU(X).
join1(X

′
1, X

′′
1 , X1) :- join(X ′

1, X
′′
1 , X1).

join2(X
′
1, X

′
2, X

′′
1 , X ′′

2 , X1, X2) :- join1(X ′
1, X

′′
1 , X1), join(X ′

2, X
′′
2 , X2).

join3(X
′
1, X

′
2, X

′
3, X

′′
1 , X ′′

2 , X ′′
3 , X1, X2, X3) :- join2(X ′

1, X
′
2, X

′′
1 , X ′′

2 , X1, X2), join(X ′
3, X

′′
3 , X3).

...
joinn(X ′

1, . . . , X
′
n, X ′′

1 , . . . , X ′′
n , X1, . . . , Xn) :- joinn−1(X ′

1, . . . , X
′
n−1, X

′′
1 , . . . , X ′′

n−1, X1, . . . , Xn−1),
join(X ′

n, X ′′
n , Xn).

Instead of the FILTER expressions Rb
(2) and Rb

(6′), we can now directly add the atom join|VN |(V
′
N , V ′′

N , VN) to the
rewritten rule bodies from Step 1. The slightly different behavior of Rb

(2) and Rb
(6′) is then accounted for by replacing

variables changing the head of rules (6’) to

answer2∗i
′(vars(P ′)[VN → V ′

N], D)

The predicate HU used in the bodies of the first three rules is defined as in Sec. 4.1, and serves for making the rules
safe.

We remark that this translation only solves the problem of exponential blowup at the surface, the evaluation of the
joinn rules above in a bottom-up Datalog engine would still be exponential in the size of |VN |. This is not surprising
though, given the negative complexity results in [18]. See also the discussion on the translation of Example 2.5 in the
appendix for more details.

In total, we obtain a program which Πb
Q which reflects the normative b-joining semantics. Consequently, we get

sound and complete query translations for all three semantics:

Corollary 4.3 (Soundness and completeness of Πx
Q) Given an arbitrary graph pattern P , the extension of predicate

answer1 in the unique answer set M of Πx
Q represents all and only the solution tuples for Q = (V, P, DS) with

respect to the x-joining semantics, for x ∈ {b, c, s}.

In the following, we will drop the superscript x in ΠQ implicitly refer to the normative b-joining translation/semantics.

5 Possible Extensions
As it turns out, the embedding of SPARQL in the rules world opens a wide range of possibilities for combinations. In
this section, we will first discuss some straightforward extensions of SPARQL which come practically for free with
the translation to Datalog provided before. We will then discuss the use of SPARQL itself as a simple RDF rules
language which allows to combine RDF fact bases with implicitly specified further facts and discuss the semantics
thereof briefly. We will conclude this section with revisiting the open issue of entailment regimes covering RDFS or
OWL semantics in SPARQL.

GIA TR 2006-11-28 16

5.1 Additional Language Features
In this section we present two additional language features for SPARQL as a suggestion to the Data Access working
group, which – though easy to add – would increase usability of SPARQL considerably in the opinion of the author.

5.1.1 Set Difference

As mentioned before, set difference is not present in the current SPARQL specification syntactically, though hidden,
and would need to be emulated via a combination of OPTIONAL and FILTER constructs. As we defined the MINUS
operator here in a completely modular fashion, it could be added straightforwardly as a separate keyword without
affecting the semantics definition.

5.1.2 Nested ASK Queries

Nested queries are a distinct feature of SQL not present in SPARQL. We suggest a simple, but useful form of nested
queries to be added: Boolean queries QASK = (∅, PASK, DSASK)) with an empty result form (denoted by the keyword
ASK) can be safely allowed within FILTER expressions as an easy extension fully compatible with our translation.
Given query Q = (V, P,DS), with sub-pattern (P1 FILTER (ASKQASK)) we can modularly translate such subqueries
by extending ΠQ with ΠQ′ where Q′ = (vars(P1) ∩ vars(PASK), PASK, DSASK)). Moreover, we have to rename
predicate names answeri to answerQ

′
i in ΠQ′ . Some additional considerations are necessary in order to combine this

within arbitrary complex filter expressions, and we probably need to impose well-designedness for variables shared
between P and PASK similar to Def. 2.4. We leave more details as future work.

5.2 Result Forms and Solution Modifiers
We have covered only SELECT queries so far. As shown in the previous section, we can consider ASK queries equally
by simply allowing empty result forms. A limited form of the CONSTRUCT result form, which allows to construct
new triples could be emulated in our approach as well. Namely, we can allow queries of the form

QC = (CONSTRUCTPC, P, DS)

where PC is a graph pattern consisting only of bNode-free triple patterns. We can model these by adding a rule

triple(s, p, o, C) :- answer1(vars(PC), default), isIRI[p](t), s != null, o != null. (2)

to ΠQ foreach triple pattern (s, p, o) in PC. The result graph is then naturally represented in the answer set of the
program extended that way in the extension of the predicate triple.16

5.3 SPARQL as a Rules Language
As it turns out with the extensions defined in the previous subsections, SPARQL itself may be viewed as an expressive
rules language on top of RDF. CONSTRUCT statements have an obvious similarity with view definitions in SQL,
and thus may be seen as rules themselves.

Intuitively, in the translation of CONSTRUCT we “stored” the new triples in a new triple outside the dataset DS,
defining a new “context” C. We can imagine a similar construction in order to define the semantics of queries over
datasets mixing such CONSTRUCT statements with RDF data in the same turtle file.

Let us assume such a mixed file containing CONSTRUCT rules and RDF triples web-accessible at IRI g, and
a query Q = (V, P, DS), with DS = (G, Gn). The semantics of a query over a dataset containing g may then be
defined by recursively adding ΠQC to ΠQ for any CONSTRUCT query QC in g plus the rules (2) above with their
head changed to triple(s, p, o, g). We further need to add a rule

triple(s, p, o, default) :- triple(s, p, o, g).
16As a sidenote, we remark that if implemented on top of a logic programming engine beyond Datalog, allowing for function symbols, we could

also allow bNodes in the CONSTRUCT graph pattern, by replacing these with Skolem-functions.

GIA TR 2006-11-28 17

for each g ∈ G, in order not to omit any of the implicit triples defined by such “CONSTRUCT rules”. Analogously to
the considerations for nested ASK queries, we need to rename the answeri predicates and default constants in every
subprogram ΠQC defined this way.

Naturally, the resulting programs possibly involve recursion, and, even worse, recursion over negation as failure.
Fortunately, the general answer set semantics, which we use, can cope with this. For some important aspects on the
semantics of such distributed rules and facts bases, we refer to [20], where we also outline an alternative semantics
based on the well-founded semantics. A more in-depth investigation of the complexity and other semantic features of
such a combination is on our agenda.

5.4 Revisiting Entailment Regimes
The current SPARQL specification does not treat entailment regimes beyond RDF simple entailment. Strictly speak-
ing, even RDF entailment is already problematic as a basis for SPARQL query evaluation; a simple query pattern like
P = (?X, rdf:type, rdf:Property) would have infinitely many solutions even on the empty (sic!) dataset by matching
the infinitely many axiomatic triples in the RDF(S) semantics.

On the contrary, finite rule sets which approximate the RDF(S) semantics in terms of positive Datalog rules [20]
have been implemented in systems like TRIPLE17 or JENA18. Similarly, fragments and extensions of OWL [14, 3, 16]
definable in terms of Datalog rule bases have been proposed in the literature. Such rule bases can be parametrically
combined with our translations, implementing what one might call RDFS− or OWL− entailment at least. It remains
to be seen whether the SPARQL working group will define such reduced entailment regimes.

More complex issues arise when combining a nonmonotonic query language like SPARQL with monotonic ontol-
ogy languages such as OWL. Our embedding of SPARQL into a nonmonotonic rules language might provide valuable
insights here, since it opens up a whole body of work done on combinations of such rules languages with first-order
logic based ontology languages [9, 22].

6 Prototype
A prototype of the presented translation has been implemented on top of the dlvhex system, a flexible framework
for developing extensions for the declarative Logic Programming Engine DLV19. The prototype is available as a
plugin at http://con.fusion.at/dlvhex/ for download. The web-page also provides an online interface
for evaluation at http://con.fusion.at/dlvhex/sparql-query-evaluation.php, where the reader
can check translation results for various example queries. We also added listings obtained by translating all sample
queries from this paper in the appendix below.

Note that the output of the prototype might sligthly differ from the versions obtained from strictly implementing
the translation outlined in this paper. For instance, in the current implementation indices may be named differently
and joins of simple triple patterns are collapsed into single rules. We currently implement the c-joining and b-joining
semantics and we plan to gradually extend the prototype towards the features mentioned in Sec. 5, in order to query
mixed RDF+SPARQL rule and fact bases. Implementation of further extensions, such as the integration of aggre-
gates typical for database query language – and recently defined for recursive Datalog programs in a declarative way
compatible with the answer set semantics [11] – are on our agenda.

7 Conclusions & Related Work
In this paper, we presented three possible semantics for SPARQL based on Pérez et al. [18] which differ mainly in
their treatment of joins and provided translations of all three semantics to Datalog with nonmonotonic negation.

We slightly extended Pérez et al.’s semantics in missing parts such as a more complete treatment of complex
FILTER expressions and graph patterns. Let us remark that a very recent technical report by the same authors [19]

17http://triple.semanticweb.org/
18http://jena.sourceforge.net/
19http://www.dlvsystem.com/

GIA TR 2006-11-28 18

encompasses some very similar extensions towards a more complete coverage of SPARQL. We discussed intuitive
behavior of joins in the different semantics in several examples.

As it turned out, the s-joining semantics which is close to traditional treatment of joins over incomplete relations
and the c-joining semantics are nicely embeddable into Datalog. The b-joining semantics which reflects the normative
behavior as described by the current SPARQL specification is most difficult to translate. Finally, we suggested some
extension of SPARQL, based on the provided translations.

We hope to have contributed to clarifying the relationships between the Query, Rules and Ontology layers of the
Semantic Web architecture with the present work. A prototype implementation of the presented translation is available.
We are currently not aware of any other engine implementing the full semantics defined in [18].

As for related work, we should finally not forget to remark that also earlier work by Cyganiak [6] was trying
to embed SPARQL in more traditional relational algebra, in order to implement SPARQL on top of existing SQL
engines, which we consider complementary to what we were doing here.

8 Acknowledgments
Special thanks go to Jos de Bruijn and Reto Krummenacher for discussions on earlier versions of this document,
to Bijan Parsia, Jorge Pérez, and Andy Seaborne for valuable insights gained through various email-discussions, to
Roman Schindlauer for his invaluable help on prototype implementation on top of dlvhex, and to the anonymous
reviewers of the conference version of this report for various useful comments. This work is partially supported
by the Spanish MEC under the project TIC-2003-9001 and by the EC funded projects TripCom (FP6-027324) and
KnowledgeWeb (IST 507482).

References
[1] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press,

2003.

[2] D. Beckett. Turtle - Terse RDF Triple Language, Tech. Report, 4 Apr. 2006. http://www.dajobe.org/
2004/01/turtle/

[3] J. de Bruijn, A. Polleres, R. Lara, D. Fensel. OWL DL vs. OWL Flight: Conceptual modeling and reasoning for
the semantic web. In Proc. WWW-2005, 2005.

[4] F. Calimeri and G. Ianni. External sources of computation for Answer Set Solvers. In C. Baral, G. Greco,
N. Leone, and G. Terracina, editors, Proc. LPNMR’05, Diamante, Italy, volume 3662 of LNCS, pp. 105–118.
Springer, 2005.

[5] J. Carroll, C. Bizer, P. Hayes, P. Stickler. Named graphs. Journal of Web Semantics, 3(4), 2005.

[6] R. Cyganiak. A relational algebra for sparql. Technical Report HPL-2005-170, HP Labs, Sept. 2005.

[7] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of Logic Programming.
ACM Computing Surveys, 33(3):374–425, 2001.

[8] J. de Bruijn, E. Franconi, S. Tessaris. Logical reconstruction of normative RDF. OWL: Experiences and Direc-
tions Workshop (OWLED-2005), 2005.

[9] T. Eiter, G. Ianni, A. Polleres, R. Schindlauer, H. Tompits. Reasoning with rules and ontologies. Reasoning Web
2006, volume 4126 of LNCS, pp. 93–127. Springer, 2006.

[10] T. Eiter, G. Ianni, R. Schindlauer, H. Tompits. A Uniform Integration of Higher-Order Reasoning and External
Evaluations in Answer Set Programming. Int.l Joint Conf. on Art. Intelligence (IJCAI), 2005.

GIA TR 2006-11-28 19

[11] W. Faber, N. Leone, G. Pfeifer. Recursive aggregates in disjunctive logic programs: Semantics and complexity.
Proc. of the 9th European Conf. on Art. Intelligence (JELIA 2004), 2004. Springer

[12] A. V. Gelder, K. Ross, J. Schlipf. Unfounded sets and well-founded semantics for general logic programs. 7th

ACM Symp. on Principles of Database Systems, 1988.

[13] M. Gelfond, V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases. New Generation
Computing, 9:365–385, 1991.

[14] B. N. Grosof, I. Horrocks, R. Volz, S. Decker. Description logic programs: Combining logic programs with
description logics. Proc. WWW-2003, 2003.

[15] P. Hayes. RDF semantics. W3C Recommendation, 10 Feb. 2004. http://www.w3.org/TR/rdf-mt/

[16] H. J. ter Horst. Completeness, decidability and complexity of entailment for RDF Schema and a semantic
extension involving the OWL vocabulary. Journal of Web Semantics, 3(2), July 2005.

[17] J. W. Lloyd, R. W. Topor. Making prolog more expressive. Journal of Logic Programming, 1(3):225–240, 1984.

[18] J. Pérez, M. Arenas, C. Gutierrez. Semantics and complexity of SPARQL. The Semantic Web – ISWC 2006,
2006. Springer.

[19] J. Pérez, M. Arenas, and C. Gutierrez. Semantics of SPARQL. Technical Report TR/DCC-2006-17, Universidad
de Chile), May 2006.

[20] A. Polleres, C. Feier, A. Harth. Rules with contextually scoped negation. Proc. 3rd European Semantic Web
Conf. (ESWC2006), 2006. Springer.

[21] E. Prud’hommeaux, A. S. (ed.). SPARQL Query Language for RDF. W3C Working Draft, 4 Oct. 2006. http:
//www.w3.org/TR/rdf-sparql-query/

[22] R. Rosati. Reasoning with Rules and Ontologies. Reasoning Web 2006, volume 4126 of LNCS, pp. 128–151.
Springer, 2006.

[23] SQL-99. Information Technology - Database Language SQL- Part 3: Call Level Interface (SQL/CLI). Technical
Report INCITS/ISO/IEC 9075-3, INCITS/ISO/IEC, Oct. 1999. Standard specification.

[24] J. D. Ullman. Principles of Database and Knowledge Base Systems. Computer Science Press, 1989.

[25] W3C. Rule Interchange Format Working Group, since 2005. http://www.w3.org/2005/rules/wg.

GIA TR 2006-11-28 20

Appendix: Translations of Sample Queries
———————————————————–

In this appendix we provide corresponding programs and answers for some sample queries mentioned in this paper,
as well as some queries from the SPARQL spec [21] in order to exemplify the translation. We will, for each query,
first give the query in SPARQL syntax as specified in [21], then provide the pattern in our notation and, finally provide
the translated logic programs Πc

Q, Πs
Q,Πb

Q together with the answers obtained in each of the three semantics.
For reasons of clarity, we explicitly specify the dataset in the form of FROM and FROM NAMED clauses in

SPARQL syntax. As before, we omit and the leading ’http://’ or other schema identifiers in IRIs and do not use
namespace prefixes except in SPARQL syntax.

Query 1
We start with the query from Figure 1.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?Y ?X
FROM <alice.org>
FROM <ex.org/bob>
WHERE { ?Y foaf:name ?X . }

This corresponds to Q1 = (V1, P1, DS1) with V1 = {?X, ?Y }, DS1 = ({ex.org/bob, alice.org}, ∅), and

P1 = (?Y, name, ?X)

Πc
Q1

= Πs
Q1

= Πb
Q1

=

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,default) :- rdf["alice.org"](S,P,O).
answer1(X,Y,default) :- triple(Y,"name",X,default).

The query delivers the following answers:

{ answer1("Bob","_:a",default),
answer1("Bob","_:c",default),
answer1("Alice","alice.org#me",default) }

Query 2
We continue with the query from Example 2.1.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?N
FROM <ex.org/bob>
WHERE { ?G foaf:maker ?M .

GRAPH ?G { ?X foaf:name ?N } }

This corresponds to Q2 = (V2, P2, DS2) with V1 = {?N}, DS2 = ({ex.org/bob}, ∅), and

P2 = ((?G, maker, ?M) AND (GRAPH ?G (?X, name, ?N)))

Πc
Q2

= Πs
Q2

= Πb
Q2

=

GIA TR 2006-11-28 21

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
answer1(N,default) :- answer2(G,M,default), answer3(G,N,X,default).
answer2(G,M,default) :- triple(G,"maker",M,default).
answer3(G,N,X, default) :- answer3(G,N,X,G), isIRI(G), not G = default.
answer3(G,N,X,G) :- triple(X,"maker",N,G).

This query delivers no answers, i.e. the extension of predicate answer1 is empty in the (unique) answer set.
If we adopt the dataset closedness assumption, we need to add the rules

triple(S,P,O,G) :- rdf[G](S,P,O), HU(G), isIRI(G).
HU(X) :- triple(X,P,O,D).
HU(X) :- triple(S,X,O,D).
HU(X) :- triple(S,P,X,D).
HU(X) :- triple(S,P,O,X).

and would obtain the following answers:

{ answer1("_:b",default), answer1("_:a",default) }

Query 3
The next query is the one from Example 2.2.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?X
FROM <ex.org/bob>
WHERE { { ?X a foaf:Person .

OPTIONAL { ?X foaf:dummy ?Y . }
}
FILTER (!(isLITERAL (?Y))) }

This corresponds to Q3 = (V3, P3, DS3) with V3 = {?X}, DS3 = ({ex.org/bob}, ∅), and

P3 = (((?X, a, Person) OPT (?X, dummy, ?Y))FILTER(¬(isLITERAL(?Y))))

Πc
Q3

= Πs
Q3

= Πb
Q3

=

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
answer1(X_X,default) :- answer2(X_X,X_Y,default), isLITERAL[Y](f).
answer2(X_X,X_Y, default) :- answer4(X_X,default), answer5(X_X,X_Y,default).
answer2(X_X,null,default) :- answer4(X_X,default), not answer5’(X_X,default).
answer5’(X_X,default) :- answer5(X_X,X_Y,default).
answer4(X_X,default) :- triple(X_X,"a","Person",default).
answer5(X_X,X_Y,default) :- triple(X_X,"dummy",X_Y,default).

Note that unlike the usual Lloyd-Topor rewriting, the negation symbol is not rewritten by introducing a new predicate
symbol and negating it with negation as failure not but to simply testing whether the filter expresion evaluates to f,
i.e. ⊥, see Definition 2.2. Thus, the query delivers no answers.

Query 4
We proceed with the query from Example 2.3.

GIA TR 2006-11-28 22

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT *
FROM <alice.org>
FROM <ex.org/bob>
WHERE { ?X foaf:name ?Name .

?X foaf:knows ?Friend }

This corresponds to Q4 = (V4, P4, DS4) with V4 = {?Friend, ?Name, ?X}, DS4 = ({ex.org/bob, alice.org}, ∅),
and

P4 = ((?X, name, ?Name)AND(?X, knows, ?Friend))

Again, all three translations remain the same, as the pattern is well-designed, i.e. Πc
Q4

= Πs
Q4

= Πb
Q4

=

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,default) :- rdf["alice.org"](S,P,O).
answer1(Friend,Name,X_X,default) :- answer2(Friend,X,default),

answer3(Name,X,default)
answer2(Friend,X,default) :- triple(X,"knows",Friend,default).
answer3(Name,X,default) :- triple(X,"name",Name,default).

We obtain the following answers:

{ answer1("_:b","Bob","_:a", default),
answer1("_:c","Alice","alice.org#me") }

Compared with the result table in Example 2.3, we see that the “column order” has changed due to lexicographically
ordering the variables.

Query 5
Looking at the query from Example 2.4, we get to the first example where the three translations actually diverge.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT *
FROM <alice.org>
FROM <ex.org/bob>
WHERE { { ?X1 a foaf:Person . OPTIONAL { ?X1 foaf:name ?N } }

{ ?X2 a foaf:Person . OPTIONAL { ?X2 foaf:nick ?N } } }

This corresponds to Q5 = (V5, P5, DS5) with V5 = {?N, ?X1, ?X2}, DS5 = ({ex.org/bob, alice.org}, ∅), and

P5 = (((?X1, a, Person) OPT (?X1, name, ?N)) AND
((?X2, a, Person) OPT (?X2, nick, ?N)))

Πc
Q5

=

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,default) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,default) :- answer2(N,X1,default), answer3(N,X2,default).

answer2(N, X1,default) :- answer4(X1,default), answer5(N,X1,default).
answer2(null,X1,default) :- answer4(X1,default), not answer5’(X1,default).
answer5’(X1,default) :- answer5(N,X1,default).

GIA TR 2006-11-28 23

answer4(X1,default) :- triple(X1,"a","Person",default).
answer5(N,X1,default) :- triple(X1,"name",N,default).

answer3(N, X2,default) :- answer6(X2,default), answer7(N,X2,default).
answer3(null,X2,default) :- answer6(X2,default), not answer7’(X2,default).
answer7’(X2,default) :- answer7(N,X2,default).

answer6(X2,default) :- triple(X2,"a","Person",default).
answer7(N,X2,default) :- triple(X2,"nick",N,default).

Under c-joining semantics we obtain the following answers:

{ answer1(null,"_:b","_:a", default),
answer1(null,"_:b","alice.org#me", default),
answer1("Alice","alice.org#me","_:b", default) }

Πs
Q5

=

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,default) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,default) :- answer2(N,X1,default), answer3(N,X2,default), N != null.

answer2(N, X1,default) :- answer4(X1,default), answer5(N,X1,default).
answer2(null,X1,default) :- answer4(X1,default), not answer5’(X1,default).
answer5’(X1,default) :- answer4(X1,default), answer5(N,X1,default).

answer4(X1,default) :- triple(X1,"a","Person",default).
answer5(N,X1,default) :- triple(X1,"name",N,default).

answer3(N, X2,default) :- answer6(X2,default), answer7(N,X2,default).
answer3(null,X2,default) :- answer6(X2,default), not answer7’(X2,default).
answer7’(X2,default) :- answer6(X2,default), answer7(N,X2,default).

answer6(X2,default) :- triple(X2,"a","Person",default).
answer7(N,X2,default) :- triple(X2,"nick",N,default).

Note here, that the only shared possibly-null-binding variable in a join is N at the top-level, so only the rule for
answer1 needs the additional filter condition. Under s-joining semantics we obtain the single answer:

{ answer1("Alice","alice.org#me","_:b", default) }

Πb
Q5

=

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,default) :- rdf["alice.org"](S,P,O).

answer1(N,X1,X2,default) :- answer2(N’,X1,default), answer3(N’’,X2,default),
N = N’, N’ = N’’.

answer1(N,X1,X2,default) :- answer2(N’,X1,default), answer3(N’’,X2,default),
N = N’, N’’ = null.

answer1(N,X1,X2,default) :- answer2(N’,X1,default), answer3(N’’,X2,default),

GIA TR 2006-11-28 24

N = N’’, N’ = null.

answer2(N, X1,default) :- answer4(X1,default), answer5(N,X1,default).
answer2(null,X1,default) :- answer4(X1,default), not answer5’(X1,default).
answer5’(X1,default) :- answer4(X1,default), answer5(N,X1,default).

answer4(X1,default) :- triple(X1,"a","Person",default).
answer5(N,X1,default) :- triple(X1,"name",N,default).

answer3(N, X2,default) :- answer6(X2,default), answer7(N,X2,default).
answer3(null,X2,default) :- answer6(X2,default), not answer7’(X2,default).
answer7’(X2,default) :- answer6(X2,default), answer7(N,X2,default).

answer6(X2,default) :- triple(X2,"a","Person",default).
answer7(N,X2,default) :- triple(X2,"nick",N,default).

Under b-joining semantics we obtain the following answers:

{ answer1(null,"_:b","_:a",default),
answer1(null,"_:b","alice.org#me",default),
answer1("Bobby","_:b","_:c",default),
answer1("Bob","_:a","_:a",default),
answer1("Bob","_:a","alice.org#me",default),
answer1("Bob","_:c","_:a",default),
answer1("Bob","_:c","alice.org#me",default),
answer1("Alice","_:b","_:b",default),
answer1("Alice","alice.org#me","_:b",default),
answer1("Alice","alice.org#me","_:a",default),
answer1("Alice","alice.org#me","alice.org#me",default) }

In the translated program Πb
Q5

above the complex FILTER expression

Rb
(2) = (((N = N ′) ∧ (N ′ = N ′′)) ∨ ((N = N ′) ∧ ¬BOUND(N ′′)) ∨

((N = N ′′) ∧ ¬BOUND(N ′)))

is already decomposed. Actually, the interested reader might realize that we can write the three rules for predicate
answer1 equivalently, and avoiding variable renaming completely as follows:

answer1(N,X1,X2,default) :- answer2(N,X1,default), answer3(N,X2,default).
answer1(N,X1,X2,default) :- answer2(N,X1,default), answer3(null,X2,default).
answer1(N,X1,X2,default) :- answer2(null,X1,default), answer3(N,X2,default).

Our implemented prototype rather creates this form of rewriting, and we will use this simplified form of rewriting the
b-joining FILTERs in the following.

Query 6
Let us now draw our attention to the second query from Example 2.5, which is concernde with idempotency:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT *
FROM <alice.org/singleTriple.rdf>
WHERE { { { ?X a foaf:Person } UNION { ?Y a foaf:Person } }

{ { ?X a foaf:Person } UNION { ?Y a foaf:Person } } }

GIA TR 2006-11-28 25

This corresponds to Q6 = (V6, P6, DS6) with V6 = {?X, ?Y }, DS6 = ({(alice.org#me, a, Person)}, ∅), and the
query pattern:

P6 = (((?X, a, Person) UNION (?Y, a, Person)) AND
((?X, a, Person) UNION (?Y, a, Person)))

Πc
Q6

=

triple(S,P,O,default) :- rdf["alice.org/singleTriple.rdf"](S,P,O).
answer1(X,Y,default) :- answer2(X,Y,default),answer3(X,Y,default).
answer2(X,null,default) :- triple(X,"a","Person",default).
answer2(null,Y,default) :- triple(Y,"a","Person",default).
answer3(X,null,default) :- triple(X,"a","Person",default).
answer3(null,Y,default) :- triple(Y,"a","Person",default).

Under c-joining semantics we obtain the following answers:

{ answer1(null,"alice.org/singleTriple.rdf#me",default),
answer1("alice.org/singleTriple.rdf#me",null,default) }

Πs
Q6

=

triple(S,P,O,default) :- rdf["alice.org/singleTriple.rdf"](S,P,O).
answer1(X,Y,default) :- answer2(X,Y,default),answer3(X,Y,default),

X != null, Y != null.
answer2(X,null,default) :- triple(X,"a","Person",default).
answer2(null,Y,default) :- triple(Y,"a","Person",default).
answer3(X,null,default) :- triple(X,"a","Person",default).
answer3(null,Y,default) :- triple(Y,"a","Person",default).

Under the s-joining semantics this query does not deliver any answers, proving that idempotency does not hold in
general in this semantics.

{ answer1(null,"alice.org/singleTriple.rdf#me",default),
answer1("alice.org/singleTriple.rdf#me",null,default) }

Πb
Q6

=

triple(S,P,O,default) :- rdf["alice.org/singleTriple.rdf"](S,P,O).
answer1(X,Y,default) :- answer2(X,Y,default), answer3(X,Y,default).
answer1(X,Y,default) :- answer2(X,Y,default), answer3(X,null,default).
answer1(X,Y,default) :- answer2(X,null,default), answer3(X,Y,default).
answer1(X,Y,default) :- answer2(X,Y,default), answer3(null,Y,default).
answer1(X,Y,default) :- answer2(X,Y,default), answer3(null,null,default).
answer1(X,Y,default) :- answer2(X,null,default), answer3(null,Y,default).
answer1(X,Y,default) :- answer2(null,Y,default), answer3(X,Y,default).
answer1(X,Y,default) :- answer2(null,Y,default), answer3(X,null,default).
answer1(X,Y,default) :- answer2(null,null,default), answer3(X,Y,default).
answer2(X,null,default) :- triple(X,"a","Person",default).
answer2(null,Y,default) :- triple(Y,"a","Person",default).
answer3(X,null,default) :- triple(X,"a","Person",default).
answer3(null,Y,default) :- triple(Y,"a","Person",default).

With this example we can observe the potential exponential blowup of the translation under the b-joining semantics.
Acually, in this particular example, we can observe that we could save some of the rules for answer1, e.g.

GIA TR 2006-11-28 26

answer1(X,Y,default) :- answer2(null,null,default), answer3(X,Y,default).
answer1(X,Y,default) :- answer2(X,Y,default), answer3(null,null,default).

These rules could be safely dropped from Πb
Q6

, since in neither of the involved UNION patterns both X and Y can be
bound to null. Formalizing and implementing such optimizations is currently on our agenda, but, due to the complexity
results in [18], we may not expect that in the worst-case an exponential number of rules needs to be added to emulate
b-joins.

More precisely, the paper by Pérez et al. proofs worst case PSPACE query complexity for non-well-designed
SPARQL queries. There is a similar result, i.e. PSPACE program complexity, for nonrecursive Datalog with nega-
tion [7]. Actually, we have shown in Sec. 4.2.2 a rewriting which does not have exponential blowup, by means of
auxiliary joinn predicates, definable for an upper bound of the number of possibly-null-binding variables in joins.
An upper bound for this number of variables is always given by the size of the query pattern itself. However, for typical
bottom-up Datalog engines such as dlvhex this does not make a difference since these engines instantiate programs
prior to evaluation (called “grounding”, such that the problem would only be shifted to the grounding. For this reason,
we decided to go with the translation shown above in the current implementation.

The answers delivered under b-joining semantics also show the typical non-idempotency of this semantics.

{ answer1(null,"alice.org#me",default),
answer1("alice.org#me",null,default),
answer1("alice.org#me","alice.org#me",default) }

Query 7
We conclude with the query from Example 2.6.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT *
FROM <alice.org>
FROM <ex.org/bob>
WHERE { ?X a foaf:Person .

OPTIONAL { ?X foaf:name ?XNAME }
OPTIONAL { ?X foaf:nick ?XNAME } }

This corresponds to Q7 = (V7, P7, DS7) with V7 = {?X, ?Y }, DS7 = ({ex.org/bob, alice.org}, ∅), and the
query pattern:

P7 = ((((?X, a, Person) OPT (?X, name, ?XNAME))
OPT (?X, nick, ?XNAME))

Πc
Q7

=

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,default) :- rdf["alice.org"](S,P,O).
answer1(X,XNAME,default) :- answer2(X,XNAME,default), answer3(X,XNAME,default).
answer1(X,XNAME,default) :- answer2(X,XNAME,default), not answer3’(X,XNAME,default).
answer3’(X,XNAME,default) :- answer3(X,XNAME,default).

answer2(X,XNAME,default) :- answer4(X,default), answer5(X,XNAME,default).
answer2(X,null,default) :- answer4(X,default), not answer5’(X,default).
answer5’(X,default) :- answer5(X,XNAME,default).

answer3(X,XNAME,default) :- triple(X,"nick",XNAME,default).
answer4(X,default) :- triple(X,"a","Person",default).
answer5(X,XNAME,default) :- triple(X,"name",XNAME,default).

GIA TR 2006-11-28 27

Under the c-joining semantics, we obtain the following answers:

{ answer1("_:b",null,default),
answer1("_:a","Bob",default),
answer1("_:c","Bob",default),
answer1("alice.org#me","Alice",default) }

Πs
Q7

=

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,default) :- rdf["alice.org"](S,P,O).
answer1(X,XNAME,default) :- answer2(X,XNAME,default), answer3(X,XNAME,default).
answer1(X,XNAME,default) :- answer2(X,XNAME,default), not answer3’(X,XNAME,default).
answer3’(X,XNAME,default) :- answer2(X,XNAME,default), answer3(X,XNAME,default),

XNAME != null.

answer2(X,XNAME,default) :- answer4(X,default), answer5(X,XNAME,default).
answer2(X,null,default) :- answer4(X,default), not answer5’(X,default).
answer5’(X,default) :- answer4(X,default), answer5(X,XNAME,default).

answer3(X,XNAME,default) :- triple(X,"nick",XNAME,default).
answer4(X,default) :- triple(X,"a","Person",default).
answer5(X,XNAME,default) :- triple(X,"name",XNAME,default).

Under the s-joining semantics, this query delivers the same answers as for c-joining semantics:

{ answer1("_:b",null,default),
answer1("_:a","Bob",default),
answer1("_:c","Bob",default),
answer1("alice.org#me","Alice",default) }

Πb
Q7

=

triple(S,P,O,default) :- rdf["ex.org/bob"](S,P,O).
triple(S,P,O,default) :- rdf["alice.org"](S,P,O).
answer1(X,XNAME,default) :- answer2(X,XNAME,default), answer3(X,XNAME,default).
answer1(X,XNAME,default) :- answer2(X,null,default), answer3(X,XNAME,default).
answer1(X,XNAME,default) :- answer2(X,XNAME,default), answer3(X,null,default).
answer1(X,XNAME,default) :- answer2(X,XNAME,default), not answer3’(X,XNAME,default).
answer3’(X,XNAME,default) :- answer2(X,XNAME,default), answer3(X,XNAME,default).
answer3’(X,null,default) :- answer2(X,null,default), answer3(X,XNAME,default).
answer3’(X,XNAME,default) :- answer2(X,XNAME,default), answer3(X,null,default).

answer2(X,XNAME,default) :- answer4(X,default), answer5(X,XNAME,default).
answer2(X,null,default) :- answer4(X,default), not answer5’(X,default).
answer5’(X,default) :- answer4(X,default), answer5(X,XNAME,default).

answer3(X,XNAME,default) :- triple(X,"nick",XNAME,default).
answer4(X,default) :- triple(X,"a","Person",default).
answer5(X,XNAME,default) :- triple(X,"name",XNAME,default).

Under the b-joining semantics, this query delivers the following answers, including the expected result for :b:

GIA TR 2006-11-28 28

{ answer1("_:b","Alice",default),
answer1("_:a","Bob",default),
answer1("_:c","Bob",default),
answer1("alice.org#me","Alice",default) }

For more example translations, we suggest to try out our prototype by either downloading dlvhex from http:
//con.fusion.at/dlvhex/ or directly access the online interface for our prototype available at: http://
con.fusion.at/dlvhex/sparql-query-evaluation.php

