
Rules with Contextually Scoped Negation

Axel Polleres1,2, Cristina Feier1, and Andreas Harth1

1 Digital Enterprise Research Institute Innsbruck, Austria and Galway, Ireland
2 Universidad Rey Juan Carlos, Madrid, Spain

axel@polleres.net, {cristina.feier,andreas.harth}@deri.org

Abstract. Knowledge representation formalisms used on the Semantic
Web adhere to a strict open world assumption. Therefore, nonmonotonic
reasoning techniques are often viewed with scepticism. Especially nega-
tion as failure, which intuitively adopts a closed world view, is often
claimed to be unsuitable for the Web where knowledge is notoriously
incomplete. Nonetheless, it was suggested in the ongoing discussions
around rules extensions for languages like RDF(S) or OWL to allow
at least restricted forms of negation as failure, as long as negation has
an explicitly defined, finite scope. Yet clear definitions of such “scoped
negation” as well as formal semantics thereof are missing. We propose
logic programs with contexts and scoped negation and discuss two possi-
ble semantics with desirable properties. We also argue that this class of
logic programs can be viewed as a rule extension to a subset of RDF(S).

1 Introduction

The current Web is a huge network linking between different sources of data and
knowledge, formatted for human users. Such linked knowledge bases become
particularly interesting when it comes to discussions about the next generation
of the Web, the Semantic Web. Technologies like RDF(S) [5] and OWL [16]
shall allow us to describe meta-data and the structure of such meta-data in an
unambiguous way using standardized vocabularies, also called ontologies. These
ontologies let you infer additional knowledge about the meta-data published on
the Web. Meta-data descriptions and ontologies are to be distributed over the
Web just like current Web pages as machine-readable knowledge bases accessible
via URIs. Different approaches exist for combining such meta-data from different
sources. A common approach is to import and/or simply reuse the vocabulary of
one ontology in the definition of another, for instance using common namespaces
or OWL’s import mechanism. A more fine-grained approach is in the form of so-
called mappings or bridge rules [4] that connect entities from different knowledge
bases. Eventually, standardized rule languages, which allow for the definition of
such mappings or other combinations of meta-data in general are the natural
next evolution step on W3C’s agenda. Still, there are many unresolved issues
around the proper integration of ontology language recommendations such as
RDFS and OWL with existing rule languages. For instance, nonmonotonic fea-
tures of such rule languages are viewed with partial scepticism3. In particular,

3 cf. http://lists.w3.org/Archives/Public/public-sws-ig/2004Jan/0040.html

it is argued that the use of negation as failure is invalid in an open environment
such as the Web where knowledge is notoriously incomplete. Still, two of the
proposals for rule languages on the Web, namely WRL [1] and SWSL Rules [2],
include negation as failure as a language feature, however leaving critical ques-
tions about the suitability of negation as failure in a Web context open. Recently,
the term “scoped negation” emerged in discussions around this topic, to describe
a restricted form of negation as failure over a closed scope. “Scoped negation as
failure” is also explicitly mentioned as one of the extensions to be investigated
by W3C’s recently established Rule Interchange Format (RIF) working group4.
However, clear definitions of what “scope” and “scoped negation” actually mean
and what the formal semantics for this form of negation should be are missing.

Contributions In this paper we present a logic programming framework for the
combination of interlinked rule bases on the Web and show how scoped negation
as failure fits in such a framework. A peculiarity of our rule language is that
it allows “open” as well as “closed” rules: On the one hand, universally valid,
open rules shall be allowed which apply to any available statement on the Web.
This is in accordance with RDF and OWL which also allow that several sources
define statements and axioms affecting the same resource.5 On the other hand,
we also define closed rules which are only evaluated with respect to a particular
context, that is a (finite and known set of) web-accessible rule base(s).

We ensure in our language that negation as failure is always “scoped”, i.e.
that the search for failure in a rule body is not depending on any “open” rules.
This way we circumvent the undesirable non-monotonic effects of negation as fail-
ure in open environments such as the Web. Thereby we achieve a weak form of
monotonicity, called “context-monotonicity” which intuitively means that nega-
tion as failure behaves monotonically with respect to the set of web-accessible
rule-bases that an agent is aware of. In order to achieve context-monotonicity
we propose two alternative semantics for sets of rule bases with scoped nega-
tion, namely (a) contextually bounded semantics and (b) contextually closed
semantics. Both semantics are defined in terms of translations to normal logic
programs. Remarkably, these translations make no commitment to a particular
semantics used for negation as failure upfront, be it well-founded or stable, and
allow for direct implementations on top of many existing rule engines which
adopt either of these semantics.

We further demonstrate that our language can be viewed as a rule extension
of (a subset of) RDFS.

Paper Overview. The remainder of this paper is organized as follows: In sec-
tion 2 we illustrate by means of simple examples what we understand by context,
“open” and “closed” rules, and queries. We formally introduce the syntax for
logic programs with contexts and scoped literals in section 3.1. We then define
a formal requirement for a proper semantics for such programs called context-
monotonicity. The two alternative semantics fulfilling this requirement are pre-
sented in sections 3.2 and 3.3. We relate our approach to RDF(S) in section 4

4 cf. http://www.w3.org/2005/rules/wg/charter.
5 Actually, a strong argument why semantics of these languages assume an open world.

and slightly extend our notion of scope to unions of contexts in section 5. Finally,
we discuss some related works and draw conclusions in sections 6 and 7.

2 Context, Open Rules and Scoped Negation

In the following, we will give an informal description of our notion of context,
logic programs with open vs. closed rules and introduce our understanding of
scoped negation as failure for such programs. We will base these explanations
on simple examples. The underlying formal definitions are given in section 3.1.
Context For tracking provenance of a single fact or rule, we associate a context
with each statement. We define a context as the URI of a Web-accessible data
source (i.e. the location where a set of rules and facts is accessible). That means
the context 〈URI〉 is associated with all the rules and facts retrieved when you
type URI in your browser.
Rules and Queries In the context of our rule language, we assume a Web
of logic programs, published at different URIs. In order to illustrate this, we
assume programs describing movies, directors and ratings as shown in Figure 1.
The notation we use is the usual syntax known from e.g. PROLOG systems.

http://www.moviereviews.com/
rated(m1,bad).

rated(X,bad) :- directedBy(X,"Ed Wood"). (*)

http://www.b-movies.com/
rated(m1,classic).

rated(m3,classic).
http://www.polleres.net/
rated(m2,bad). movie(m2).
http://www.imdb.com/
sciFiMovie(m1). hasTitle(m1,"Plan 9 from Outer Space"). directedBy(m1,"Ed Wood").
sciFiMovie(m2). hasTitle(m2,"Matrix Revolutions"). directedBy(m2,"Andy Wachowski").
directedBy(m2,"Larry Wachowski").

sciFiMovie(m3). hasTitle(m3,"Bride of the Monster"). directedBy(m3,"Ed Wood").
movie(X) :- sciFiMovie(X).

...

Fig. 1. Four Programs describing rules and data about movies, directors and ratings

A typical feature which we adopt from RDF is that different sources (con-
texts) are allowed to talk about the same resource. This shall allow to draw
additional conclusions from combining contexts. For instance, in our example,
three contexts http://www.imdb.com/, http://www.moviereviews.com/ and http:

//www.b-movies.com/ talk about the same movie m1. A semantic search engine
might gather arbitrary programs like the ones shown in Figure 1 on the Web from
different contexts and allow us to ask queries about particular movies. Queries
can be formalized as rules, e.g.

“Give me movies which are rated as bad” (1)

can be expressed by the following simple rule:

answer(X) :- movie(X), rated(X,bad).

We call a rule like this “open” since it is not restricted to a particular context,
but in principle all movies and ratings at all possible contexts on the Web are
of interest.

Assume that the search engine, which has to evaluate this query is aware
of the contexts http://www.imdb.com/, http://www.moviereviews.com/, http://

www.b-movies.com/, where we would expect m1 and m3 as answers. The easiest
and straightforward way to evaluate such a query then would be to retrieve
these three programs, build the union of all rules and facts and and then evalu-
ate the resulting logic program with one of the standard techniques. Note that
rated(m3,bad) is inferred by another “open” rule from the combination of two
contexts.

Usually, in such a Web search scenario we would accept incompleteness of
the given answers, since we cannot expect that our fictitious search engine has
complete knowledge about the whole Web. For instance, the search engine might
not be aware of the personal movie reviews of one of the authors published at
http://www.polleres.net/, see Figure 1 and would thus not return m2 as an
answer for query (1). But at least we can be sure that all answers are sound, as
long as programs consist of positive rules only.
Scoped Literals Recall the “open” rule (*) in http://www.moviereviews.com/

saying that everything directed by Ed Wood is bad. If we want to determine
the provenance of a certain atom (i.e., “to which context does a particular fact
belong to“) this is easy for facts such as rated(m1,bad). However, we have
certain difficulties to determine the provenance of atoms inferred by (open)
rules via information from other contexts. For instance, does the inferred atom
rated(m3,bad) “belong” to context http://www.moviereviews.com/ or con-
text http://www.imdb.com/ (which was needed to satisfy the body of the rule)?
In this paper, we will adopt the view that all facts inferred by rules belong to
the context of the rule that triggered the new fact. 6

Now that we have given an informal definition of provenance of atoms inferred
from distributed logic programs, we can ask queries about facts restricted to a
certain context, like for instance:

“Give me movies which are rated as bad by
http://www.moviereviews.com/”

(2)

We will use the following notation for such a query/rule in this paper:

answer(X) :- movie(X), rated(X,bad)@http://www.moviereviews.com/.

where we call the atom rated(bad)@http://www.moviereviews.com/a scoped
literal. By making the context explicit, we do no longer need to bother about
information concerning ratings from other sources such as the ones from http:

//www.polleres.net/.
However, we still have not solved the problem about incomplete informa-

tion here since the atom rated(bad)@http://www.moviereviews.com/ again
depends on an open rule; i.e., as soon as the search engine would become aware
of an additional source saying that a particular other movie was directed by Ed
Wood it could again infer additional information from the rule (*) in Figure 1.

6 Note that an atom can belong to several contexts. We remark that there are more
involved proposals for handling provenance of data on the Semantic Web, see e.g. [7].

This problem could be solved by making rule (*) more explicit. If we know that
IMDB has complete knowledge about all movies by Ed Wood we could replace
the rule (*) by its closed off version, adding a scope just as we did for query (2):

rated(X,bad) :- directedBy(X,"Ed Wood")@http://www.imdb.com. (**)

Now, under the assumption that http://www.imdb.com stores all directedBy(·)
atoms as explicit facts not depending on any other (open) rules, we can indeed
be sure to get complete information about the ratings for query (2).

The example shows that one has to be aware that scoped literals do not solve
the problem of incompleteness per se; completeness is only achievable if none of
rules which the scoped literal depends on contains open literals. As it turns out,
this issue becomes more severe in combination with negation as failure.
Scoped Negation as Failure Let us now focus on negative queries such as:

“Give me movies which are not ranked as bad” (3)

Such queries can be expressed in a rule language with negation as failure (not):

answer(X) :- movie(X), not rated(X,bad).

However, here we end up in a dilemma due to the inherent non-monotonicity
of negation as failure: Unless we have complete information about any rating
ever published, we can never be sure to find correct answers to such a query.

What we aim at in this paper is a more cautious form of negation, i.e. scoped
negation as failure, which allows us to ask negative queries with explicit scope,
such as:

“Give me movies which are not ranked as bad by moviereviews.com ” (4)

Now, if the ratings on moviereviews.com solely depend on facts and “closed”
rules such as (**), we can safely return correct answer. We will give a formal
definition of this condition, which we call contextual boundedness, in section 3.1.
For instance, contextual boundedness is violated by the combination of queries
such as (4) and open rules such as (*).

Contextually bounded use of scoped negation as failure intuitively guarantees
that even if we become aware of new contexts with additional information, we
do not need to retract any query answers. We will call this desirable property
context-monotonicity in the following.

3 Programs with Context and Scoped Negation

In this section, we provide the formal basis for the rule and query language
informally introduced in section 2. We will allow to express contextually scoped
queries and rules in a way that guarantees sound answers despite of incomplete
knowledge and the inherent non-monotonicity of negation as failure. We propose
two approaches to achieve this, either (a) we syntactically guarantee contextually
bounded use of negation, or (b) we close off open rules referenced by scoped
literals. We will define semantics for both these options by means of appropriate
transformations to normal logic programs which then can be evaluated using one
of the standard semantics for negation as failure.

3.1 Definitions

Definition 1 (Scoped Atoms, Literals). If t1, . . . , tn are constants or vari-
ables and c is a constant then c(t1, . . . , tn) is an atom. A scoped atom is of the
form a@u where u is a URI and a is an atom.7 A literal is either

– a (possibly scoped) atom – positive literal
– or a negated scoped atom of the form not t@u – negative literal,

i.e. all negative literals must be scoped.

Note that we do not make a distinction between constant symbols and pred-
icate symbols, since the usage is clear from the syntax. Neither do the constants
and URIs necessarily need to be disjoint.

Definition 2 (Program). A program P is a set of rules of the form

h : − l1, . . . , ln.

Where h is an unscoped atom, and l1, . . . ln are literals and all variables occurring
in h or in some negative body literal do also appear in a positive body literal. Each
program P has a URI p and we make the assumption that each program can be
accessed via its URI. The URI p is also called context of P .

The informal semantic meaning of scoped literals is that literals referenced
via an external context represent links to other programs accessible over the
Web.

Definition 3 (Link, Closure). Let P, Q be programs with names p and q,
respectively. We say that program P links to a program Q if P contains a scoped
body literal (not) a@q (direct link) or P contains a rule with a scoped body literal
(not) a@r such that the program R dereferenced by r links to Q. Given a set of
Programs P we denote by the closure Cl(P) the set of all programs in P plus all
programs which are linked to programs in P.

Definition 4 (Contextual Boundedness). A rule is contextually bounded
iff each negative body literal not a@p is contextually bounded.

A scoped literal (not) a@p is called contextually bounded, iff each rule r in
the program dereferenced by name p with head h where h is unifiable with a is
strongly contextually bounded.

A rule is strongly contextually bounded iff it has either an empty body or
each body literal is scoped and contextually bounded.

A program is (strongly) contextually bounded if each of its rules is (strongly)
contextually bounded.

Intuitively, contextual boundedness means that a literal is (recursively) only
depending on scoped literals. From our above definition, we see that we can
separate each program into its “open” and “closed” parts:

7 Note that we do not allow variables or parameterized contexts such as for example
in TRIPLE[8] or FLORA-2 [13].

Definition 5. Let P be a program, then we denote by bP c the program only
consisting of the strongly contextually bounded rules in P and by dP e the program
consisting only of not strongly contextually bounded rules in P .

Intuitively, bP c denotes a set of rules which is based only on a set of rules
closed over explicitly given contexts, whereas dP e defines all “open” rules in P .
This means that bP c is “self-contained”, i.e., independent of the contexts which
the agent (in our example the search engine) is aware of, whereas dP e is not.

Next, let us define queries before we describe an intuitive requirement which
we would expect from the proper semantics for respective query answers:

Definition 6 (Query, Query Answer). We denote by CnS(P) the set of
consequences from a set of programs P wrt. semantics S. A query q is a special
context consisting of a single rule:

answer(x1,...,xn) :- l1, ..., lk.

where x1, . . . xn are all variables and answer is a special predicate symbol not
allowed in other contexts. We define a query answer wrt. an agent A as a tuple
of constants (c1, . . . cn), such that answer(c1,...,cn)∈ CnS(PA ∪ q), where PA

denotes the set of contexts which A is aware of.

Context-Monotonicity Let us consider we ask a query q to a search engine A.
Here, the set PA is unknown to the user and only known to A. Although A might
gather tremendous amounts of URIs, i.e. programs, in an open environment such
as the Web, one can never be sure that A has complete knowledge. We would
expect the following intuitive requirement fulfilled by our semantics:

Whatever query you ask to an agent A, the results should return a maximum
set of answers which are entailed by the semantics with respect to the contexts
known to A. Additionally, the semantics we choose should guarantee, that in
case that A becomes aware of additional knowledge (i.e. programs), none of the
previous answers need to be retracted. Thus, we require that our semantics is
monotonic with respect to the addition of contexts i.e.

P ⊆ R ⇒ CnS(P) ⊆ CnS(R)

where P ,R are sets of contexts. We will further refer to this requirement as
context-monotonicity. Note that context-monotonicity can be viewed as sound-
ness of query answers: Although completeness can never be achieved, due to
openness of the environment, at least we want to be sure that our semantics only
returns sound answers.8 The claim for context-monotonicity may be viewed as
contradictory to the inherent non-monotonicity of negation as failure. However,
the intention here is as follows: Negation as failure is allowed, as long as it is
restricted to an explicit scope. This view corresponds to the usual use of nega-
tion in a database sense where a closed world assumption is made rather than
meaning negation “by default”. I.e., we allow a closed world view as long as it
is explicit where to close off.

8 Obviously, this only holds under the somewhat idealized assumption that in the
“Web of programs” only trustworthy knowledge providers publish their knowledge.

3.2 Contextually Bounded Semantics

In the following, we define the semantics of programs under the assumption that
all programs are contextually bounded, i.e. that no program negatively references
to a contextually unbounded atom. The semantics is defined in terms of a simple
rewriting in two variants, based on the stable and well-founded semantics for logic
programs, respectively. As it turns out, context-monotonicity is guaranteed for
both variants.

For a contextually bounded program p we define a rewriting trCB(p) by
replacing each rule h :- l1, ..., ln. with the rule h@p :- l1, ..., ln.

Definition 7 (Contextually Bounded Consequences). Let P = {p1, . . . , pk}
be a set of programs. Then we define CnCB(P) as follows:
Let PCB =

⋃

p∈Cl(P) trCB(p) ∪ p1 ∪ . . . ∪ pk,then

– Cnsms
CB (P) =

⋂

M(PCB) where M(Π) denotes the set of all stable mod-
els[11] of a program Π, i.e. we define Cnsms

CB (P) by the cautious consequences
of PCB under the stable model semantics.

– Cn
wfs
CB (P) = M(PCB) where M(Π) denotes the well-founded model [10] of

program Π.

We now investigate the two semantic variants wrt. context-monotonicity:

Proposition 1. Context-monotonicity holds for Cnsms
CB under the assumption

that all programs are contextually bounded for any set of programs P.

Proof. (sketch) Let us assume that context-monotonicity does not hold, i.e. there
exist programs p, r such that CnCB(p) 6⊆ CnCB({p, r}). From this, we conclude
that there exists some atom a in M(pCB) which is not in M(pCB ∪ rCB). By
the working of the stable model semantics we know that this can only be the
case if a depends negatively on some literal in rCB . However, due to the fact
that each negation is scoped and the contextual boundedness assumption, this
would imply that there exists some rule of the form b@ri : −body in rCB which
is satisfied in all stable models of pCB ∪ rCB but not in pCB and which stems
from a strongly contextually bounded rule b : −body in program ri. However,
since then ri would necessarily be in Cl(p) and thus b@ri : −body in pCB we get
a contradiction, because therefore also body solely depends on rules in pCB.

By similar arguments we can show:

Proposition 2. Context-monotonicity holds for Cn
wfs
CB under the assumption

that all programs are contextually bounded.

A simple counterexample shows that context-monotonicity no longer holds
when the requirement for contextual boundedness is dropped:

p: r:

a :- not b@p. b :- c. c.

Here, the rewriting {p}CB yields:
a :- not b@p. b :- c.

a@p :- not b@p. b@p :- c.

which obviously has a ∈ Cn
sms,wfs
CB (p), whereas {p, r}CB would extend the above

program by the facts c. and c@r. such that a 6∈ Cn
sms,wfs
CB ({p, r}).

The restriction to contextually bounded programs is justified in an open en-
vironment only under the assumption that existing programs once published
under a certain URI do not change and all previously published programs al-
ways remain accessible. Under this assumption, publishing new programs always
needs to be preceded by a check for contextual boundedness. Note that the con-
dition of contextual boundedness was defined with this assumption in mind:
Publishing/adding new programs should not ever break context-monotonicity.
However, obviously contextual boundedness is not stable against changes of sin-
gle programs as the following example shows:

p: r:

a. b :- not a@p.

Here, p is obviously contextually bounded. Upon publication of r contextual
boundedness could be checked and granted with respect to p. However, if one
later on changes p by adding the single “open” rule a :- c. contextual bound-
edness of r would be broken. Unfortunately, such violations can not be checked
upon change of a program, since in an open and decoupled environment p would
not be aware of which other programs link to it.

Thus, in the next section we try to define an alternative rewriting which
is more restrictive in the sense that it allows to infer less consequences under
both the stable or well-founded semantics, but is more resistant against program
changes, since it is independent of contextual boundedness.

3.3 Contextually Closed Semantics

Let p be an arbitrary program, then we define the program trCC(p) by rewriting
each rule h : −l1, . . . , ln. in p to h@p : −l′1, . . . , l

′
n. where

l′i =

{

li in case li is scoped
li@p otherwise

Intuitively, under this semantics the semantics of scoped literals changes to
“(not) a@p is true if and only if a can(not) be derived from p alone”.

Definition 8 (Contextually Closed Consequences). Let P = {p1, . . . , pk}
be a set of programs. Then we define CnCC(P) as follows:
Let PCC =

⋃

p∈Cl(P) trCC(p) ∪ p1 ∪ . . . ∪ pk, then

– Cnsms
CC (P) =

⋂

M(PCC) where M(Π) is the set of all stable models of Π.

– Cn
wfs
CC (P) = M(PCC) where M(Π) is the well-founded model of Π.

Context-monotonicity is trivially fulfilled under this translation both in the sta-
ble and well-founded variants, since negation is automatically “closed off” to the
linked contexts only. Note that, in case all programs are contextually bounded
the semantics still does not coincide, but contextually closed semantics is indeed
more restrictive than contextually bounded semantics:

Proposition 3. For any set of contextually bounded programs P

Cn
sms,wfs
CC (P) ⊆ Cn

sms,wfs
CB (P)

Proof. (sketch) We want to show that: Cnsms
CC (P) ⊆ Cnsms

CB (P) and Cn
wfs
CC (P) ⊆

Cn
wfs
CB (P), respectively.
Note that by construction for each rule h : −l1, . . . , ln. in bCl(P)c stemming

from program p there is a rule h@p : −l1, . . . , ln. in PCB ∩PCC . We denote this
set of rules by floor. Note that Lit(floor) is a splitting set [15] for both PCB

and PCC and thus the stable models for both PCB and PCC coincide on floor.
We can argue similarly for the well-founded semantics that the well-founded

models of PCB and PCC coincide on floor, since both 〈floor,PCC \ floor〉 and
〈floor,PCB \ floor〉 are stratified pairs [18].

Moreover, PCB \floor and PCC \floor are (due to contextual boundedness)
both positive logic programs modulo stratified input negation for literals from
floor.9 That means that both PCB \ floor and PCC \ floor extend the stable
models (or the well-founded model10) of floor. Moreover, for each stable model
(or the well-founded model) m of floor and each rule h@p : −l′1, . . . l

′
n. which is

satisfied in PCC \floor∪m there is a corresponding rule h@p : −l1, . . . ln. which
is satisfied in PCB \floor∪m. Finally, each of the remaining rules h : −l1, . . . ln.

with an unscoped head in PCC \ floor ∪ m is also present in PCB \ floor ∪ m.
This proves that proving that the consequences of PCB are a superset of the
consequences of PCC for both the well-founded and the stable semantics.

Indeed, there are consequences under contextually bounded semantics which
are invalid under contextually closed semantics, for instance:

p: r:

a :- b@r. c. b :- c.

Here, the query a?{p} is true with respect to contextually bounded semantics
but not with respect to contextually closed semantics.

This reflects the intuition that contextually closed semantics draws inferences
more cautiously and allow less interferences between programs, but does in trade
not run into problems with contextually unbounded programs.

4 RDF(S) plus Rules

In the Semantic Web, RDF is currently gaining more and more momentum.
Thus, it is worthwhile to apply our context-aware rule language with scoped
negation on arbitrary knowledge bases, consisting of RDF, RDFS and Logic
Programming style rules with scoped negation distributed over the Web at dif-
ferent URIs. In this section we introduce a straightforward LP-compliant notion

9 By “input negation” we mean that given the stable models (or well-founded model)
of floor as “input fats” for PCB \ floor and PCC \ floor only these input facts can
occur negatively in rule bodies.

10 Since both well-founded semantics and stable model semantics coincide on stratified
programs, we do not need to treat them separately for the remainder of the proof.

of a subset of RDF and investigate how it interacts with the semantics we have
defined so far. To this end we will define a subset of the RDFS semantics in terms
of open rules. As it turns out, we will need to slightly extend our definition of
scoped literals to make it work. Based on this conclusion we will finally present
a variant of contextually closed semantics in section 5.

We use a simplified syntax of RDF(S) here in terms of logic programming to
show that the major part of RDFS can be understood as a set of facts and rules
in a logic program. As implicit from [12] and partly shown in [8], large parts of
RDF(S) can be embedded in logic programming. To this end, we use logic pro-
grams which express each statement 〈S, P, O〉 by a single atom triple(S,P,O).
Almost all of the RDFS semantics itself can be expressed by the following pro-
gram

http://www.example.org/rdfs-semantics :

triple(P,rdf:type,rdf:Property) :- triple(S,P,O).

triple(S,rdf:type,rdfs:Resource) :- triple(S,P,O).

triple(O,rdf:type,rdfs:Resource) :- triple(S,P,O).

triple(S,rdf:type,C) :- triple(S,P,O), triple(P,rdfs:domain,C).

triple(O,rdf:type,C) :- triple(S,P,O), triple(P,rdfs:range,C).

triple(C,rdfs:subClassOf,rdfs:Resource) :- triple(C,rdf:type,rdfs:Class).

triple(C1,rdfs:subClassOf,C3) :- triple(C1,rdfs:subClassOf,C2),

triple(C2,rdfs:subClassOf,C3).

triple(S,rdf:type,C2) :- triple(S,rdf:type,C1),

triple(C1,rdfs:subClassOf,C2).

triple(C,rdf:type,rdfs:Class) :- triple(S,rdf:type,C).

triple(C,rdfs:subClassOf,C) :- triple(C,rdf:type,rdfs:Class).

triple(P1,rdfs:subPropertyOf,P3) :- triple(P1,rdfs:subPropertyOf,P2),

triple(P2,rdfs:subPropertyOf,P3).

triple(S,P2,O) :- triple(S,P1,O),

triple(P1,rdfs:subPropertyOf,P2).

triple(P,rdfs:subPropertyOf,P) :- triple(P,rdf:type,rdf:Property).

plus the respective axiomatic triples in RDF/RDFS, cf. [12, Sections 3.1 and
4.1]. For simplicity, we ignore XML literals, data types, containers and blank
nodes here. Additional issues related with these features of RDF are out of the
scope of this paper. We can now simply view the above program as a new context
with the URI http://www.example.org/rdfs-semantics .

In order to illustrate the interplay of our semantics with this RDFS formu-
lation, we revisit the examples from section 2 in terms of RDF, see Figure 2.

Our intention is to embed the RDFS semantics as a set of open rules in our
framework. For this, we assume that an agent which answers a query is always
aware of the RDFS context. However, as we will see, this is not enough.

Note that negative literals that depend on RDFS inferences, immediately
cause violations of contextual boundedness. Let us consider the query

“Give me all movies not listed at http://www.imdb.com/” (5)

asked to a search engine aware of contexts http://www.example.org/rdfs-semantics,
http://www.imdb.com/, http://www.moviereviews.com/, and http://www.polleres.

net/, cf. (2). The straightforward formulation of this query

http://www.moviereviews.com/
triple(ex:m1,ex:rate,ex:bad).

http://www.polleres.net/
triple(ex:m2,ex:rate,ex:bad).
triple(ex:m2,rdf:type,movie).

http://www.imdb.com/
triple(ex:m1,rdf:type,ex:sciFiMovie). triple(ex:m1,ex:title,"Plan 9 from Outer Space").

triple(ex:m1,ex:directedBy,"Ed Wood").
triple(ex:m2,rdf:type,ex:sciFiMovie). triple(ex:m2,ex:title,"Matrix Revolutions").

triple(ex:m2,ex:directedBy,"Andy Wachowski"). triple(ex:m2,ex:directedBy,"Larry
Wachowski").
triple(ex:m3,rdf:type,ex:sciFiMovie). triple(ex:m3,ex:title,"Bride of the Monster").

triple(ex:m3,ex:directedBy,"Ed Wood").
triple(ex:sciFiMovie,rdf:subClassOf,ex:movie).

...

Fig. 2. RDF versions of some of the programs from Figure 1

answer(X) :- triple(X,rdf:type,ex:movie),

not triple(X,rdf:type,ex:movie)@http://www.imdb.com/.

violates contextual boundedness because of the dependency between the neg-
ative literal from the query and the following RDFS rule:

triple(S,rdf:type,C2):- triple(S,rdf:type,C1),

triple(C1,rdfs:subClassOf,C2).

Now let us see how the same query is evaluated wrt. the contextually-closed
semantics. We expect the answer to this query to be empty. However, the above-
mentioned RDFS rule which should allow one to derive that ex:m1 and ex:m2

are movies listed by http://www.imdb.com/, will never be applied because of the
working of trCC , and the final answer will be ex:m2.

We extend our syntax by allowing unions of contexts in literal scopes to deal
with this problem, which allows us to reformulate the query above as follows:

“Give me all movies not listed at http://www.imdb.com/, under additional
consideration of http://www.example.org/rdfs-semantics”

(6)

which could be written as

answer(X) :- triple(X,rdf:type,ex:movie),

not triple(X,rdf:type,ex:movie)@

{http://www.example.org/rdfs-semantics, http://www.imdb.com/}.

We need to extend trCC to handle unions of contexts in scoped literals , as
we will show in the next section. Note that we do not cover unions of contexts as
an extension of trCB due to the inherent violation of contextual boundedness.

5 Contextually Closed Semantics with Context Sets

The basic intuition behind extending contextually closed semantics with unions
of contexts in scoped literals is as follows: A literal scoped over a union of contexts
shall be evaluated with respect to and closed over the union of the respective
programs. Thus, we adapt the definition of trCC as follows:

Let P be an arbitrary set of programs, then trCC(P) is defined by rewriting
each rule h : −l1, . . . , ln. in any of the programs in P to h@P : −l′1, . . . , l

′
n. where

l′i =

{

l@R in case li = l@R is a scoped literal with possibly set scope R
li@P otherwise

plus recursively adding trCC(R) for any scoped body literal l@R.
Note that this more general definition is equivalent to the original definition

of trCC despite it per se includes the relevant part of the closure already. That
means, we can also simplify the definition of PCC in Definition 8 as follows:

PCC =
⋃

p∈(P)

(trCC(p) ∪ p)

The remainder of Definition 8 can stay as is for this generalization. As we can
easily verify, query (6) would be correctly answered under this semantics.

6 Related Works

FLORA-2 [13] is a query answering system based on the logic programming
fragment of F-Logic [14], a frame-based syntactic variant of first-order logic
popular for ontology reasoning. FLORA-2’s module mechanism allows a form
of scoped negation as failure using the well-founded semantics. Negative queries
can be posed to a certain module. However, variables can be used in the place of
the module identifier, in which case the scope of the query (negation) is the union
of all the modules registered with the system at that point in time. This rather
unrestricted way for defining scoped negation does not fulfill our monotonicity
criterion with respect to the addition of new modules in the general case. Anyway,
FLORA-2 is a system and per se does not define the semantics of programs
and queries defined on the Web, nor are any assumptions made that modules
need to coincide with contexts (i.e. URIs) in our sense. Implementations of our
transformations on top of FLORA-2 are possible.

N3 [3] is a language for representing RDF rules on the Web. It has a form
of scoped negation as failure and without an explicit notion of context. In N3
negation appears in the form of an infix operator log:notIncludes11 that links
two (possibly complex) formulas and that succeeds whenever the first formula
does not include the second one. However, a formula is not necessarily closed in
our sense and can have infinite size in N3 due to the presence of blank nodes
(existentials) in the head of the rules.12 This leads to a possibly infinite search
space for negation as failure, which is undesirable and contradictive with the
requirement of context-monotonicity.

TRIPLE [8] is another logic programming engine particularly tailored for
RDF reasoning and querying with the support of scoping over possibly param-
eterized contexts, allowing union, intersection and set difference over contexts.

11 http://www.w3.org/2000/10/swap/doc/Reach
12 http://lists.w3.org/Archives/Public/public-cwm-bugs/2005Jul/0000.html

The authors outline that nonmonotonic negation interpreted under the well-
founded semantics can be supported. Since variables are allowed in parameter-
ized contexts, similar considerations apply as for FLORA-2.

C-OWL [4] is a proposed extension of OWL by contexts and bridge rules. An
interesting feature of this language is that its semantics makes use of so-called
local model semantics where for each context there exists a local set of models
and a local domain of interpretation. These kinds of semantics are opposed to
the global model semantics where there exists a global model and a global do-
main of interpretation. Global model semantics have the disadvantage that local
inconsistency propagates to the whole, which is not desirable on the Web. Our se-
mantics follows a global model nature: When building on top of stable semantics
local inconsistency propagates to the whole model. Note that the well-founded
variants of our semantics do not involve inconsistency, and thus local inconsis-
tencies cannot arise. Investigation of the relations and possible integrations with
C-OWL are on our agenda.

Finally, we point out that the idea behind scoped negation as failure is orthog-
onal to the so-called local closed world assumption [9]. Instead of stating ”local
complete knowledge” as is done in local closed world assumption, we merely
impose to explicitly close off any use of negation over a context, not making any
statement about whether the knowledge of this context is indeed complete.

7 Conclusion

In this paper we discussed logic programs under contextually scoped negation
and provided two possible semantics based on simple translations to normal logic
programs. The rationale behind was keeping these translations lightweight in or-
der to facilitate direct implementations with existing engines based on either
the stable or well-founded semantics, while preserving context-monotonicity. Al-
though our framework is general we emphasized the fruitful application of our
approach in the context of rules on top of RDF and RDFS.

This work is a first step towards a proper definition for scoped negation for
the upcoming RIF working group in W3C. Open issues like for instance the
treatment of full RDF including blank nodes, data types, etc. require further in-
vestigation. Also, the transformations to normal logic programs provided in this
paper still possibly contain redundant rules and might be subject to optimiza-
tions for actual implementations. As for future extensions, it seems to be useful
to extend our definition of scope not only to unions but also intersections or
set difference of contexts. More refined concepts of context such as e.g. so-called
named RDF graphs [6] could also serve as a basis for further investigations.

We set the basis for a rule based query language. It is well-known that query
languages like SQL naturally translate into queries expressed by logic programs.
However, without negation as failure (for modeling set difference) such a query
language is incomplete. Scoped negation is a natural and lightweight candidate
to extend RDF query languages such as for instance SPARQL [17] and N3 [3] in
this direction.

Acknowledgments The authors thank Jos de Bruijn, Rubén Lara, and Michael
Kifer for fruitful discussions and the anonymous reviewers for their useful feed-
back. This work is partially supported by the EC projects DIP, KnowledgeWeb,
Infrawebs, SEKT, and ASG; by the FIT-IT projects RW2 and TSC; by SFI grant
SFI/02/CE1/I13; by the CICyT project TIC-2003-9001-C02.

References

1. J. Angele et al. Web rule language (WRL). W3C Member Submission, http:

//www.w3.org/Submission/WRL/, June 2005.
2. S. Battle, et al. Semantic Web services Framework (SWSF). W3C Member Sub-

mission, http://www.w3.org/Submission/SWSF/, May 2005.
3. T. Berners-Lee, D. Connolly, E. Prud’homeaux, and Y. Scharf. Experience with

N3 rules. In W3C Workshop on Rule Languages for Interoperability, Washington,
D.C., USA, Apr. 2005.

4. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt.
C-OWL: Contextualizing ontologies. In Second International Semantic Web Con-
ference - ISWC 2003, Sanibel Island, FL, USA, 2003.

5. D. Brickley, R. V. Guha (eds.), and B. McBride (series ed.). RDF Vocabulary
Description Language 1.0. Feb. 2004. W3C Recommendation, http://www.w3.
org/TR/2004/REC-rdf-schema-20040210/.

6. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs. Journal of Web
Semantics, 3(4), 2005.

7. Paulo Pinheiro da Silva, Deborah L. McGuinness, and Rob McCool. Knowledge
provenance infrastructure. IEEE Data Engineering Bulletin, 26(4), 2003.

8. S. Decker, M. Sintek, and W. Nejdl. The model-theoretic semantics of TRIPLE.
Technical report, 2002.

9. O. Etzioni, K. Golden, and D. Weld. Tractable closed world reasoning with up-
dates. In KR’94: Principles of Knowledge Representation and Reasoning, Bonn,
Germany, 1994.

10. A. Van Gelder, K. Ross, and J.S. Schlipf. Unfounded sets and well-founded seman-
tics for general logic programs. In 7th ACM Symposium on Principles of Database
Systems, Austin, Texas, 1988.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In 5th Int’l Conf. on Logic Programming, Cambridge, Massachusetts, 1988.

12. P. Hayes. RDF semantics. W3C Recommendation, http://www.w3.org/TR/

rdf-mt/, Feb. 2004.
13. M. Kifer. Nonmonotonic reasoning in FLORA-2. In 8th Int’l Conf. on Logic

Programming and Nonmonotonic Reasoning (LPNMR’05), Diamante, Italy, 2005.
14. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-

based languages. JACM, 42(4), 1995.
15. V. Lifschitz and H. Turner. Splitting a logic program. In Pascal Van Henten-

ryck, editor, 11th Int’l Conf. on Logic Programming (ICLP’94), Santa Margherita
Ligure, Italy, June 1994.

16. D.L. McGuinness and F. van Harmelen. OWL Web ontology lan-
guage overview. W3C Recommendation, http://www.w3.org/TR/2004/

REC-owl-features-20040210/, Feb. 2004.
17. E. Prud’hommeaux and A. Seaborne (eds.). SPARQL Query Language for RDF,

July 2005. W3C Working Draft.
18. J.S. Schlipf. Formalizing a Logic for Logic Programming. AMAI,5(2-4), 1992.

