RDF and SPARQL: Database Foundations

Marcelo Arenas, Claudio Gutierrez, Jorge Pérez

Department of Computer Science Pontificia Universidad Católica de Chile Universidad de Chile

> Center for Web Research http://www.cwr.cl/

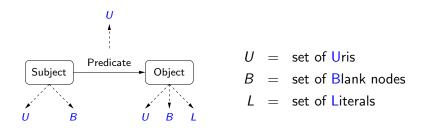
Outline

- Part I: Querying RDF Data
 - ▶ The RDF data model
 - Querying: The simple and the ideal
 - Querying: Semantics and Complexity
- Part II: Querying Data with SPARQL
 - Decisions taken
 - Decisions to be taken
- Conclusions

RDF in a nutshell

- ▶ RDF is the W3C proposal framework for representing information in the Web.
- Abstract syntax based on directed labeled graph.
- Schema definition language (RDFS): Define new vocabulary (typing, inheritance of classes and properties).
- Extensible URI-based vocabulary.
- Support use of XML schema datatypes.
- Formal semantics.

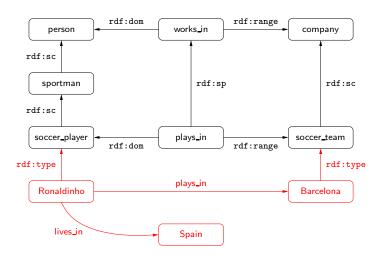
RDF formal model



$$(s, p, o) \in (U \cup B) \times U \times (U \cup B \cup L)$$
 is called an RDF triple

A set of RDF triples is called an RDF graph

RDFS: An example



RDF model

Some difficulties:

- Existential variables as datavalues
- Built-in vocabulary with fixed semantics (RDFS)
- Graph model where nodes may also be edge labels

RDF data processing can take advantage of database techniques:

- Query processing
- Storing
- Indexing

Entailment of RDF graphs

Entailment of RDF graphs:

- ► Can be defined in terms of classical notions such model, interpretation, etc
 - As for the case of first order logic
- Has a graph characterization via homomorphisms.

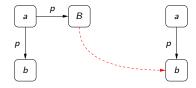
Homomorphism

A function $h: U \cup B \cup L \rightarrow U \cup B \cup L$ is a homomorphism h from G_1 to G_2 if:

- ▶ h(c) = c for every $c \in U \cup L$;
- ▶ for every $(a, b, c) \in G_1$, $(h(a), h(b), h(c)) \in G_2$

Notation: $G_1 \rightarrow G_2$

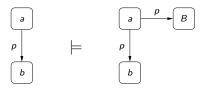
Example: $h = \{B \mapsto b\}$



Entailment

Theorem (CM77)

 $G_1 \models G_2$ if and only if there is a homomorphism $G_2 \rightarrow G_1$.

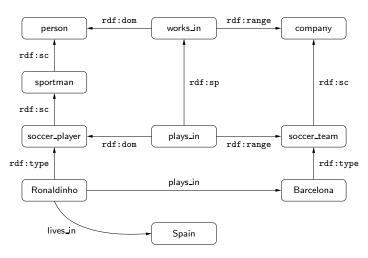


Complexity

Entailment for RDF is NP-complete

Graphs with RDFS vocabulary

Previous characterization of entailment is not enough to deal with RDFS vocabulary: (Ronaldinho, rdf: type, person)



Graphs with RDFS vocabulary

Built-in predicates have pre-defined semantics:

```
rdf:sc: transitive rdf:sp: transitive More complicated interactions: \frac{(p, rdf:dom, c) - (a, p, b)}{(a, rdf:type, c)}
```

RDFS-entailment can be characterized by a set of rules

- An Existential rule
- Subproperty rules
- Subclass rules
- Typing rules
- Implicit typing

Graphs with RDFS vocabulary: Inference rules

Inference system in [MPG07] has 14 rules:

Existential rule :
$$\frac{G_1}{G_2}$$
 if $G_2 \rightarrow G_1$

Subproperty rules :
$$\frac{(p, rdf: sp, q) (a, p, b)}{(a, q, b)}$$

Subclass rules :
$$\frac{(a, rdf:sc, b) \quad (b, rdf:sc, c)}{(a, rdf:sc, c)}$$

Typing rules :
$$\frac{(p, rdf:dom, c) \quad (a, p, b)}{(a, rdf:type, c)}$$

Implicit typing :
$$\frac{(q, \text{rdf:dom}, a) \quad (p, \text{rdf:sp}, q) \quad (b, p, c)}{(b, \text{rdf:type}, a)}$$

RDFS Entailment

Theorem (H04,GHM04,MPG07)

 $G_1 \models G_2$ iff there is a proof of G_2 from G_1 using the system of 14 inference rules.

Complexity

RDFS-entailment is NP-complete.

Proof idea

Membership in NP: If $G_1 \models G_2$, then there exists a polynomial-size proof of this fact.

Closure of an RDF Graph

Notation:

ground(G): Graph obtained by replacing every blank B

in G by a constant c_B .

ground $^{-1}(G)$: Graph obtained by replacing every constant

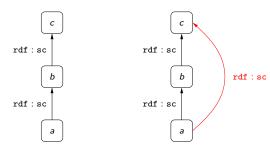
 c_B in G by B.

Closure of an RDF graph G (denoted by closure(G)):

$$G \cup \{t \in (U \cup B) \times U \times (U \cup B \cup L) \mid$$

there exists a ground tuple t' such that
 $\operatorname{ground}(G) \models t' \text{ and } t = \operatorname{ground}^{-1}(t')\}$

Closure of an RDF Graph: Example



Closure of an RDF graph: complexity

Proposition (H04,GHM04,MPG07)

$$G_1 \models G_2 \text{ iff } G_2 \rightarrow closure(G_1)$$

Complexity

The closure of G can be computed in time $O(|G|^4 \cdot \log |G|)$.

Can the closure be used in practice?

- ▶ Can we use an alternative materialization?
- ▶ Can we materialize a small part of the closure?

Core of an RDF Graph

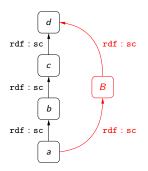
An RDF Graph G is a *core* if there is no homomorphism from G to a proper subgraph of it.

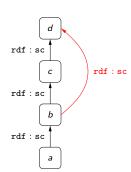
Theorem (HN92,FKP03,GHM04)

- ► Each RDF graph G has a unique core (denoted by core(G)).
- Deciding if G is a core is coNP-complete.
- ▶ Deciding if G = core(G') is DP-complete.

Core and RDFS

For RDF graphs with RDFS vocabulary, the core of *G* may contain redundant information:





A normal form for RDF graphs

To reduce the size of the materialization, we can combine both core and closure.

 $\qquad \mathsf{nf}(G) = \mathsf{core}(\mathsf{closure}(G))$

Theorem (GHM04)

- ▶ G_1 is equivalent to G_2 iff $nf(G_1) \cong nf(G_2)$.
- $\blacktriangleright \ G_1 \models G_2 \ \textit{iff} \ G_2 \rightarrow \textit{nf}(G_1)$

Complexity

The problem of deciding if $G_1 = nf(G_2)$ is DP-complete.

Let D be a database, Q a query, and Q(D) the answer.

- Outputs should belong to the same family of objects as inputs
- ▶ If $D \equiv D'$, then Q(D) = Q(D')(Weaker) If $D \equiv D'$, then $Q(D) \cong Q(D')$
- Q(D) should have no (or minimal) redundancies
- The framework should be extensible to RDFS (Should the framework be extensible to OWL?)
- Incorporate to the framework the notion of entailment

Outputs should belong to the same family of objects as inputs

- ► Allows compositionality of queries
- Allows defining views
- Allows rewriting

In RDF, the natural objects of input/output are RDF graphs.

```
If D \equiv D', then Q(D) = Q(D')
(Weaker) If D \equiv D', then Q(D) \cong Q(D')
```

- Outputs are syntactic or semantic objects?
- Need a notion of "equivalent" databases (≡) (In RDF, there is a standard notion of logical equivalence)
- ▶ One could just ask logical equivalence in the output
- ▶ In RDF there is an intermediate notion: graph isomorphism

Q(D) should have no (or minimal) redundancies

- Desirable to avoid inconsistencies
- Desirable to improve processing time and space
- Standard requirement for exchange information

The framework should be extensible to RDFS (Should the framework be extensible to OWL?)

- A basic requirement of the Semantic Web Architecture
- Extension to OWL are not trivial because of the known mismatch
- ▶ Not necessarily related to the type of semantics given (logical framework, graph matching, etc.)

Incorporate to the framework the notion of entailment

- ▶ RDF graphs are not purely syntactic objects
- ▶ Would like to incorporate KB framework
- ▶ Beware of the complexity issues! RDF navigates on the Web
- Find the good compromise

Querying RDF data: Definitions

A conjunctive query Q is a pair of RDF graphs H, B where some resources have been replaced by variables \bar{X}, \bar{Y} in V.

$$Q: \quad H(\bar{X}) \leftarrow B(\bar{X}, \bar{Y})$$

Issues:

- ► Free variables in B (projection)
- Treatment of blank nodes in B
- Treatment of blank nodes in H

Querying RDF data: Definitions (cont.)

A valuation is a function $v: V \rightarrow U \cup B \cup L$

A matching of a graph B in the database D is a valuation v such that $v(B) \subseteq D$.

A pre-answer to Q over D is the set

$$preans(Q, D) = \{v(H) : v \text{ is a matching of } B \text{ in } D \}$$

A single answer is an element of preans(Q, D)

Querying RDF data: Two semantics

Union: answer Q(D) is the union of all single answers

$$ans_U(Q,D) = \bigcup preans(Q,D)$$

Merge: answer Q(D) is the merge of all single answers

$$ans_M(Q, D) = \biguplus preans(Q, D)$$

Proposition

- 1. For both semantics, if $D \models D'$ then $ans(Q, D') \models ans(Q, D)$
- 2. For all D, $ans_U(Q, D) \models ans_M(Q, D)$
- 3. With merge semantics, we cannot represent the identity query

Querying RDF data: refined semantics

Problem

Two non-isomorphic datasets D,D' give different answers to the same query.

A slightly refined semantics:

- 1. Normalize D before querying
- 2. Then query as usual over nf(D)

```
Good News: if D \equiv D' then Q(D) \cong Q(D')
```

Bad News: computing nf(D) is hard

Querying RDF data: refined semantics (cont.)

The news as formal results:

Theorem (MPG07)

Do not need to compute the normal form.

Theorem (FG06)

If a query language has the following two properties:

- 1. for all Q, if $D \equiv D'$ then Q(D) = Q(D'),
- 2. can represent the identity query,

then the complexity of evaluation is NP-hard (in data complexity).

Querying RDF data: Containment

A query Q contains a query Q, denoted $Q \sqsubseteq Q'$ iff ans(Q, D) comprises all the information of ans(Q', D).

In classical DB: $ans(Q, D) \subseteq ans(Q', D)$

In our setting we have two versions:

- ▶ $ans(Q', D) \subseteq ans(Q, D)$ $(Q \sqsubseteq_p Q')$
- ▶ $preans(Q, D) \subseteq preans(Q', D)$ (modulo iso) $(Q \sqsubseteq_m Q')$

For ground RDF both notions coincide.

Querying RDF data: Complexity

Query complexity version: The evaluation problem is NP-complete

Data complexity version: The evaluation problem is polynomial

Querying with SPARQL

- ► SPARQL is the W3C candidate recommendation query language for RDF.
- SPARQL is a graph-matching query language.
- ► A SPARQL query consists of three parts:
 - Pattern matching: optional, union, nesting, filtering.
 - ▶ Solution modifiers: projection, distinct, order, limit, offset.
 - Output part: construction of new triples, . . .

Recall the formalization from Unit-2

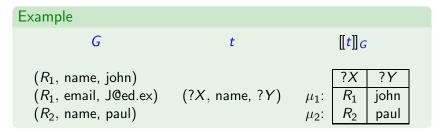
Syntax:

- ▶ Triple patterns: RDF triple + variables (no bnodes)
- ▶ Operators between triple patterns: AND, UNION, OPT.
- Filtering of solutions: FILTER.
- A full parenthesized algebra.

Recall the formalization from Unit-2

Semantics:

- ▶ Based on mappings, partial functions from variables to terms.
- ▶ A mapping μ is a solution of triple pattern t in G iff
 - $\mu(t) \in G$
 - ▶ $dom(\mu) = var(t)$.
- $ightharpoonup [[t]]_G$ is the evaluation of t in G, the set of solutions.



Compatible mappings

Definition

Two mappings are compatible if they agree in their shared variables.

Example

• μ_2 and μ_3 are not compatible

Sets of mappings and operations

Let M_1 and M_2 be sets of mappings:

Definition

Join: $M_1 \bowtie M_2$

lacktriangle extending mappings in M_1 with compatible mappings in M_2

Difference: $M_1 \setminus M_2$

lacktriangle mappings in M_1 that cannot be extended with mappings in M_2

Union: $M_1 \cup M_2$

▶ mappings in M_1 plus mappings in M_2 (set theoretical union)

Definition

Left Outer Join: $M_1 \bowtie M_2 = (M_1 \bowtie M_2) \cup (M_1 \setminus M_2)$

Semantics of general graph patterns

Definition

Given a graph G the evaluation of a pattern is recursively defined

- $ightharpoonup [[(P_1 \text{ AND } P_2)]]_G = [[P_1]]_G \bowtie [[P_2]]_G$
- ▶ $[[(P_1 \text{ UNION } P_2)]]_G = [[P_1]]_G \cup [[P_2]]_G$
- $[[(P_1 \ \mathsf{OPT} \ P_2)]]_G = [[P_1]]_G \bowtie [[P_2]]_G$
- ▶ $[[(P \text{ FILTER } R)]]_G = \{\mu \in [[P]]_G \mid \mu \text{ satisfies } R\}$

Differences with Relational Algebra / SQL

- Not a fixed output schema
 - mappings instead of tables
 - schema is implicit in the domain of mappings
- ► Too many NULLs
 - mappings with disjoint domains can be joined
 - mappings with distinct domains in output solutions
- SPARQL-to-SQL translations experience this issues
 - need of IS NULL/IS NOT NULL in join/outerjoin conditions
 - need of COALESCE in constructing output schema

SPARQL complexity: the evaluation problem

Input:

A mapping μ , a graph pattern P, and an RDF graph G.

Question:

Is the mapping in the evaluation of the pattern against the graph?

$$\mu \in [\![P]\!]_G?$$

Evaluation of AND-FILTER patterns is polynomial.

Theorem (PAG06)

For patterns using only AND and FILTER operators, the evaluation problem is polynomial:

$$O(|P| \times |G|)$$
.

Proof idea

- ► Check that the mapping makes every triple to match.
- Then check that the mapping satisfies the FILTERs.

Evaluation including UNION is NP-complete.

Theorem (PAG06)

For patterns using AND, FILTER and UNION operators, the evaluation problem is NP-complete.

Proof idea

- Reduction from 3SAT.
- ▶ A pattern encodes the propositional formula.
- ▶ ¬bound is used to encode negation.

Evaluation including OPT is PSPACE-complete.

Theorem (PAG06)

For patterns using AND, FILTER and OPT operators, the evaluation problem is PSPACE-complete.

Proof idea

- Reduction from QBF
- ► A pattern encodes a quantified propositional formula:

$$\forall x_1 \exists y_1 \forall x_2 \exists y_2 \cdots \psi.$$

▶ nested OPTs are used to encode quantifier alternation. (This time, we do not need ¬ bound.)

PSPACE-hardness: A closer look

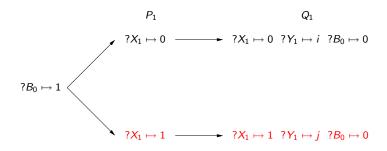
```
Assume \varphi = \forall x_1 \exists y_1 \ \psi, where \psi = (x_1 \lor \neg y_1) \land (\neg x_1 \lor y_1).
```

We generate G, P_{φ} and μ_0 such that μ_0 belongs to the answer of P_{φ} over G iff φ is valid:

```
\begin{array}{lll} G & : & \{(a, \operatorname{tv}, 0), \; (a, \operatorname{tv}, 1), \; (a, \operatorname{false}, 0), \; (a, \operatorname{true}, 1)\} \\ \\ P_{\psi} & : & ((a, \operatorname{tv}, ?X_1) \; \operatorname{AND} \; (a, \operatorname{tv}, ?Y_1)) \; \operatorname{FILTER} \\ & & ((?X_1 = 1 \vee ?Y_1 = 0) \wedge (?X_1 = 0 \vee ?Y_1 = 1)) \\ \\ P_{\varphi} & : & (a, \operatorname{true}, ?B_0) \; \operatorname{OPT} \; (P_1 \; \operatorname{OPT} \; (Q_1 \; \operatorname{AND} \; P_{\psi})) \\ \\ \mu_0 & : & \{?B_0 \mapsto 1\} \end{array}
```

PSPACE-hardness: A closer look

 $\begin{array}{lll} P_{\varphi} & : & (a, \texttt{true}, ?B_0) \ \mathsf{OPT} \ (P_1 \ \mathsf{OPT} \ (Q_1 \ \mathsf{AND} \ P_{\psi})) \\ P_1 & : & (a, \texttt{tv}, ?X_1) \\ Q_1 & : & (a, \texttt{tv}, ?X_1) \ \mathsf{AND} \ (a, \texttt{tv}, ?Y_1) \ \mathsf{AND} \ (a, \texttt{false}, ?B_0) \end{array}$



Data-complexity is polynomial

Theorem (PAG06)

When patterns are consider to be fixed (data complexity), the evaluation problem is in LOGSPACE.

Proof idea

From data-complexity of first-order logic.

SPARQL reordering/optimization: a simple normal from

- ▶ AND and UNION are commutative and associative.
- ▶ AND, OPT, and FILTER distribute over UNION.

Theorem (UNION Normal Form)

Every graph pattern is equivalent to one of the form

 P_1 UNION P_2 UNION \cdots UNION P_n

where each P_i is UNION-free.

We concentrate in UNION-free patterns.

Well-designed patterns

Definition

A graph pattern is well-designed iff for every OPT in the pattern

$$\begin{pmatrix} \cdots \cdots & (& A & \mathsf{OPT} & B &) & \cdots \cdots \\ & \uparrow & & \uparrow & & \uparrow \\ \end{pmatrix}$$

if a variable occurs inside B and anywhere outside the OPT, then the variable must also occur inside A.

Example

Well-designed patterns and PSPACE-hardness

In the PSPACE-hardness reduction we use this formula:

 P_{arphi} : $(a, \text{true}, ?B_0) \text{ OPT } (P_1 \text{ OPT } (Q_1 \text{ AND } P_{\psi}))$

 P_1 : $(a, tv, ?X_1)$

 Q_1 : $(a, tv, ?X_1)$ AND $(a, tv, ?Y_1)$ AND $(a, false, ?B_0)$

It is not well-designed: B_0

Well-designed patterns: reordering/optimization

For well-designed patterns

- ▶ P_1 AND $(P_2$ OPT $P_3) \equiv (P_1$ AND $P_2)$ OPT P_3
- $ightharpoonup (P_1 ext{ OPT } P_2) ext{ OPT } P_3 \equiv (P_1 ext{ OPT } P_3) ext{ OPT } P_2$

Theorem (OPT Normal Form)

Every well-designed pattern is equivalent to one of the form

$$(\cdots (t_1 \text{ AND } \cdots \text{ AND } t_k) \text{ OPT } O_1)\cdots) \text{ OPT } O_n)$$

where each t_i is a triple pattern, and each O_j is a pattern of the same form.

Final remarks

- ▶ RDFS can be considered a new data model.
 - ▶ It is the W3C's recommendation for describing Web metadata.
- RDFS can definitely benefit from database technology.
 - ▶ RDFS: Formal semantics, entailment of RDFS graphs, normal forms for RDFS graphs (closure and core).
 - ► SPARQL: Formal semantics, complexity of query evaluation, query optimization.
 - Updating
 - ...

References

- ▶ A. Chandra, P. Merlin, Optimal Implementation of Conjunctive Queries in Relational Databases. In STOC 1977.
- ▶ R. Fagin, P. Kolaitis, L. Popa, *Data Exchange: Getting to the Core*. In *PODS* 2003.
- C. Gutierrez, C. Hurtado, A. O. Mendelzon, Foundations of Semantic Web Databases. In PODS 2004.
- ▶ P. Hayes, *RDF Semantics*. W3C Recommendation 2004.
- ▶ P. Hell, J. Nesetril, *The Core of a Graph. Discrete Mathematics* 1992.
- S. Muñoz, J. Pérez, C. Gutierrez, Minimal Deductive Systems for RDF. In ESWC 2007.
- ▶ J. Pérez, M. Arenas, C. Gutierrez, Semantics and Complexity of SPARQL. In ISWC 2006.