
SPARQL Extensions and Outlook

Axel Polleres1

1DERI Galway, National University of Ireland, Galway
axel.polleres@deri.org

European Semantic Web Conference 2007

A. Polleres – SPARQL Extensions and Outlook 1 / 16

Outline

Translation to LP, a bit more formal

Next steps? Some possible Examples

Lessons to be learned from SQL?
Nested queries – Nesting ASK
Aggregates

Lessons to be learned from Datalog, Rules Languages, etc. ?
Use SPARQL as rules
Mixing data and rules – Recursion?

A. Polleres – SPARQL Extensions and Outlook 2 / 16

Translation to LP, a bit more formal

Given a query q = (V ,P,DS), DS = (G ,GN)

SELECT V
FROM G
FROM NAMED GN

WHERE P

we denote by Πq the logic program obtained by the translation
sketched in the previous Unit, where we give the auxiliary
predicates non-ambiguous names, i.e. answeriq.

Then, the extension of the predicate answer1q contains all answer
substitutions for q.

A. Polleres – SPARQL Extensions and Outlook 3 / 16

Translation to LP, a bit more formal

Given a query q = (V ,P,DS), DS = (G ,GN)

SELECT V
FROM G
FROM NAMED GN

WHERE P

we denote by Πq the logic program obtained by the translation
sketched in the previous Unit, where we give the auxiliary
predicates non-ambiguous names, i.e. answeriq.

Then, the extension of the predicate answer1q contains all answer
substitutions for q.

A. Polleres – SPARQL Extensions and Outlook 3 / 16

Translation to LP, a bit more formal

Given a query q = (V ,P,DS), DS = (G ,GN)

SELECT V
FROM G
FROM NAMED GN

WHERE P

we denote by Πq the logic program obtained by the translation
sketched in the previous Unit, where we give the auxiliary
predicates non-ambiguous names, i.e. answeriq.

Then, the extension of the predicate answer1q contains all answer
substitutions for q.

A. Polleres – SPARQL Extensions and Outlook 3 / 16

Example: q1 = ({?E , ?N},
(((?X : name ?N) OPT (?X : email ?E))),
({http : //alice.org}, ∅))

SELECT ?N ?E
FROM <http://alice.org>
WHERE { ?X :name ?N

OPTIONAL {?X :email ?E } }

Πq1 =

triple(S,P,O,defaultq1) :- rdf["alice.org"](S,P,O).

answer1q1(E,N,defaultq1) :- triple(X,":name",N,defaultq1),

triple(X,":email",E,defaultq1).

answer1q1(null,N,defaultq1) :- triple(X,":name",N,defaultq1),

not answer2q1(X).

answer2q1(X) :- triple(X,":email",E,defaultq1).

More complex queries are decomposed recursively introducing more auxiliary

predicates for nested sub-patterns: answer2q, answer3q, answer4q1,

answer5q1 , . . .

A. Polleres – SPARQL Extensions and Outlook 4 / 16

Example: q1 = ({?E , ?N},
(((?X : name ?N) OPT (?X : email ?E))),
({http : //alice.org}, ∅))

SELECT ?N ?E
FROM <http://alice.org>
WHERE { ?X :name ?N

OPTIONAL {?X :email ?E } }

Πq1 =

triple(S,P,O,defaultq1) :- rdf["alice.org"](S,P,O).

answer1q1(E,N,defaultq1) :- triple(X,":name",N,defaultq1),

triple(X,":email",E,defaultq1).

answer1q1(null,N,defaultq1) :- triple(X,":name",N,defaultq1),

not answer2q1(X).

answer2q1(X) :- triple(X,":email",E,defaultq1).

More complex queries are decomposed recursively introducing more auxiliary

predicates for nested sub-patterns: answer2q, answer3q, answer4q1,

answer5q1 , . . .

A. Polleres – SPARQL Extensions and Outlook 4 / 16

Example: q1 = ({?E , ?N},
(((?X : name ?N) OPT (?X : email ?E))),
({http : //alice.org}, ∅))

SELECT ?N ?E
FROM <http://alice.org>
WHERE { ?X :name ?N

OPTIONAL {?X :email ?E } }

Πq1 =

triple(S,P,O,defaultq1) :- rdf["alice.org"](S,P,O).

answer1q1(E,N,defaultq1) :- triple(X,":name",N,defaultq1),

triple(X,":email",E,defaultq1).

answer1q1(null,N,defaultq1) :- triple(X,":name",N,defaultq1),

not answer2q1(X).

answer2q1(X) :- triple(X,":email",E,defaultq1).

More complex queries are decomposed recursively introducing more auxiliary

predicates for nested sub-patterns: answer2q, answer3q, answer4q1,

answer5q1 , . . .

A. Polleres – SPARQL Extensions and Outlook 4 / 16

Example: q1 = ({?E , ?N},
(((?X : name ?N) OPT (?X : email ?E))),
({http : //alice.org}, ∅))

SELECT ?N ?E
FROM <http://alice.org>
WHERE { ?X :name ?N

OPTIONAL {?X :email ?E } }

Πq1 =

triple(S,P,O,defaultq1) :- rdf["alice.org"](S,P,O).

answer1q1(E,N,defaultq1) :- triple(X,":name",N,defaultq1),

triple(X,":email",E,defaultq1).

answer1q1(null,N,defaultq1) :- triple(X,":name",N,defaultq1),

not answer2q1(X).

answer2q1(X) :- triple(X,":email",E,defaultq1).

More complex queries are decomposed recursively introducing more auxiliary

predicates for nested sub-patterns: answer2q, answer3q, answer4q1,

answer5q1 , . . .

A. Polleres – SPARQL Extensions and Outlook 4 / 16

Next steps?

Disclaimer: What follows in this unit is a speculative outlook and
does not necessarily reflect the SPARQL working group’s agenda.
We discuss in this unit two starting points for such extensions:

I Lessons to be learned from SQL

I Lessons to be learned from Datalog

Both these partially overlap, and we will discuss how they integrate
with the current SPARQL spec by using the translation from the
previous unit.

A. Polleres – SPARQL Extensions and Outlook 5 / 16

Lessons to be learned from SQL: Nested ASK queries (1/2)

Nested queries are very common in SQL e.g.

SELECT ...FROM WHERE EXISTS (SELECT ...

a simple and very useful extension for SPARQL could be nesting of
boolean queries (ASK) in FILTERS:

SELECT ...FROM WHERE { P FILTER (ASK PASK) }

So, how could we implement e.g.

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER (!(ASK {?X :email ?E })) }

Note that this give a more elegant solution for “set difference” queries

avoiding the OPTIONAL/!bound combination!

A. Polleres – SPARQL Extensions and Outlook 6 / 16

Lessons to be learned from SQL: Nested ASK queries (1/2)

Nested queries are very common in SQL e.g.

SELECT ...FROM WHERE EXISTS (SELECT ...

a simple and very useful extension for SPARQL could be nesting of
boolean queries (ASK) in FILTERS:

SELECT ...FROM WHERE { P FILTER (ASK PASK) }

So, how could we implement e.g.

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER (!(ASK {?X :email ?E })) }

Note that this give a more elegant solution for “set difference” queries

avoiding the OPTIONAL/!bound combination!

A. Polleres – SPARQL Extensions and Outlook 6 / 16

Lessons to be learned from SQL: Nested ASK queries (1/2)

Nested queries are very common in SQL e.g.

SELECT ...FROM WHERE EXISTS (SELECT ...

a simple and very useful extension for SPARQL could be nesting of
boolean queries (ASK) in FILTERS:

SELECT ...FROM WHERE { P FILTER (ASK PASK) }

So, how could we implement e.g.

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER (!(ASK {?X :email ?E })) }

Note that this give a more elegant solution for “set difference” queries

avoiding the OPTIONAL/!bound combination!

A. Polleres – SPARQL Extensions and Outlook 6 / 16

Lessons to be learned from SQL: Nested ASK queries (1/2)

Nested queries are very common in SQL e.g.

SELECT ...FROM WHERE EXISTS (SELECT ...

a simple and very useful extension for SPARQL could be nesting of
boolean queries (ASK) in FILTERS:

SELECT ...FROM WHERE { P FILTER (ASK PASK) }

So, how could we implement e.g.

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER (!(ASK {?X :email ?E })) }

Note that this give a more elegant solution for “set difference” queries

avoiding the OPTIONAL/!bound combination!

A. Polleres – SPARQL Extensions and Outlook 6 / 16

Lessons to be learned from SQL: Nested ASK queries (1/2)

Nested queries are very common in SQL e.g.

SELECT ...FROM WHERE EXISTS (SELECT ...

a simple and very useful extension for SPARQL could be nesting of
boolean queries (ASK) in FILTERS:

SELECT ...FROM WHERE { P FILTER (ASK PASK) }

So, how could we implement e.g.

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER (!(ASK {?X :email ?E })) }

Note that this give a more elegant solution for “set difference” queries

avoiding the OPTIONAL/!bound combination!

A. Polleres – SPARQL Extensions and Outlook 6 / 16

Lessons to be learned from SQL: Nested ASK queries (2/2)

Given query q = (V ,P,DS), with sub-pattern
(P1 FILTER (ASK qASK)) and qASK = (∅,PASK,DSASK):

I modularly translate such sub-queries by extending Πq with Πq′

where q′ = (vars(P1) ∩ vars(PASK),PASK,DSASK))
I let DSASK default to DS if not specified otherwise.

Example:

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER (!(ASK {?X :email ?E })) }

vars(P1) ∩ vars(PASK) = {X}
q′ = ({?X}, (?X : email?E), ({http : //alice.org}, ∅))

Πq:
answer1q′(X) :- triple(X,”:email”,E, default).
answer1q(N) :- triple(X,”:name”,N, default), not answer1q′(X).

A. Polleres – SPARQL Extensions and Outlook 7 / 16

Lessons to be learned from SQL: Nested ASK queries (2/2)

Given query q = (V ,P,DS), with sub-pattern
(P1 FILTER (ASK qASK)) and qASK = (∅,PASK,DSASK):

I modularly translate such sub-queries by extending Πq with Πq′

where q′ = (vars(P1) ∩ vars(PASK),PASK,DSASK))
I let DSASK default to DS if not specified otherwise.

Example:

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER (!(ASK {?X :email ?E })) }

vars(P1) ∩ vars(PASK) = {X}
q′ = ({?X}, (?X : email?E), ({http : //alice.org}, ∅))

Πq:
answer1q′(X) :- triple(X,”:email”,E, default).
answer1q(N) :- triple(X,”:name”,N, default), not answer1q′(X).

A. Polleres – SPARQL Extensions and Outlook 7 / 16

Lessons to be learned from SQL: Nested ASK queries (2/2)

Given query q = (V ,P,DS), with sub-pattern
(P1 FILTER (ASK qASK)) and qASK = (∅,PASK,DSASK):

I modularly translate such sub-queries by extending Πq with Πq′

where q′ = (vars(P1) ∩ vars(PASK),PASK,DSASK))
I let DSASK default to DS if not specified otherwise.

Example:

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER (!(ASK {?X :email ?E })) }

vars(P1) ∩ vars(PASK) = {X}
q′ = ({?X}, (?X : email?E), ({http : //alice.org}, ∅))

Πq:
answer1q′(X) :- triple(X,”:email”,E, default).
answer1q(N) :- triple(X,”:name”,N, default), not answer1q′(X).

A. Polleres – SPARQL Extensions and Outlook 7 / 16

Lessons to be learned from SQL: Nested ASK queries (2/2)

Given query q = (V ,P,DS), with sub-pattern
(P1 FILTER (ASK qASK)) and qASK = (∅,PASK,DSASK):

I modularly translate such sub-queries by extending Πq with Πq′

where q′ = (vars(P1) ∩ vars(PASK),PASK,DSASK))
I let DSASK default to DS if not specified otherwise.

Example:

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER (!(ASK {?X :email ?E })) }

vars(P1) ∩ vars(PASK) = {X}
q′ = ({?X}, (?X : email?E), ({http : //alice.org}, ∅))

Πq:
answer1q′(X) :- triple(X,”:email”,E, default).
answer1q(N) :- triple(X,”:name”,N, default), not answer1q′(X).

A. Polleres – SPARQL Extensions and Outlook 7 / 16

Lessons to be learned from SQL: Nested ASK queries (2/2)

Given query q = (V ,P,DS), with sub-pattern
(P1 FILTER (ASK qASK)) and qASK = (∅,PASK,DSASK):

I modularly translate such sub-queries by extending Πq with Πq′

where q′ = (vars(P1) ∩ vars(PASK),PASK,DSASK))
I let DSASK default to DS if not specified otherwise.

Example:

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER (!(ASK {?X :email ?E })) }

vars(P1) ∩ vars(PASK) = {X}
q′ = ({?X}, (?X : email?E), ({http : //alice.org}, ∅))

Πq:
answer1q′(X) :- triple(X,”:email”,E, default).
answer1q(N) :- triple(X,”:name”,N, default), not answer1q′(X).

A. Polleres – SPARQL Extensions and Outlook 7 / 16

Lessons to be learned from SQL: Nested ASK queries (2/2)

Given query q = (V ,P,DS), with sub-pattern
(P1 FILTER (ASK qASK)) and qASK = (∅,PASK,DSASK):

I modularly translate such sub-queries by extending Πq with Πq′

where q′ = (vars(P1) ∩ vars(PASK),PASK,DSASK))
I let DSASK default to DS if not specified otherwise.

Example:

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER (!(ASK {?X :email ?E })) }

vars(P1) ∩ vars(PASK) = {X}
q′ = ({?X}, (?X : email?E), ({http : //alice.org}, ∅))

Πq:
answer1q′(X) :- triple(X,”:email”,E, default).
answer1q(N) :- triple(X,”:name”,N, default), not answer1q′(X).

A. Polleres – SPARQL Extensions and Outlook 7 / 16

Lessons to be learned from SQL: Aggregates (1/4)

Example Count:

SELECT ?X
FROM <http://example.org/lotsOfFOAFData.rdf>
WHERE { ?X a person .

FILTER (
COUNT{ ?Y : ?X foaf:knows ?Y} > 3

) }

I Possible argument against:
I UNA, closed world!
I Implementation needs to take special care for counting

semantics (duplicates)
I Arguments in favor:

I COUNT is already expressible!
I closed world is already there! (OPTIONAL+!bound)

A. Polleres – SPARQL Extensions and Outlook 8 / 16

Lessons to be learned from SQL: Aggregates (1/4)

Example Count:

SELECT ?X
FROM <http://example.org/lotsOfFOAFData.rdf>
WHERE { ?X a person .

FILTER (
COUNT{ ?Y : ?X foaf:knows ?Y} > 3

) }

I Possible argument against:
I UNA, closed world!
I Implementation needs to take special care for counting

semantics (duplicates)
I Arguments in favor:

I COUNT is already expressible!
I closed world is already there! (OPTIONAL+!bound)

A. Polleres – SPARQL Extensions and Outlook 8 / 16

Lessons to be learned from SQL: Aggregates (1/4)

Example Count:

SELECT ?X
FROM <http://example.org/lotsOfFOAFData.rdf>
WHERE { ?X a person .

?X foaf:knows ?Y1 , ?Y2, ?Y3 .
FILTER (!(?Y1 = ?Y2) AND

!(?Y1 = ?Y3) AND
!(?Y2 = ?Y3)) }

I Possible argument against:
I UNA, closed world!
I Implementation needs to take special care for counting

semantics (duplicates)
I Arguments in favor:

I COUNT is already expressible!
I closed world is already there! (OPTIONAL+!bound)

A. Polleres – SPARQL Extensions and Outlook 8 / 16

Lessons to be learned from SQL: Aggregates (2/4)

Aggregates: A mockup syntax proposal:

I Symbolic Set: Expression

{Vars : Pattern}
of a list Vars of variables and a pattern P
(e.g. { ?K : ?X foaf:knows ?K }).

I Aggregate Function: Expression

f {Vars : Pattern}
where

I f ∈ {COUNT ,MIN,MAX ,SUM,TIMES}, and
I {Vars : Pattern} is a symbolic set

(e.g. COUNT{ ?K : ?X foaf:knows ?K })

A. Polleres – SPARQL Extensions and Outlook 9 / 16

Lessons to be learned from SQL: Aggregates (2/4)

Aggregates: A mockup syntax proposal:

I Symbolic Set: Expression

{Vars : Pattern}
of a list Vars of variables and a pattern P
(e.g. { ?K : ?X foaf:knows ?K }).

I Aggregate Function: Expression

f {Vars : Pattern}
where

I f ∈ {COUNT ,MIN,MAX ,SUM,TIMES}, and
I {Vars : Pattern} is a symbolic set

(e.g. COUNT{ ?K : ?X foaf:knows ?K })

A. Polleres – SPARQL Extensions and Outlook 9 / 16

Lessons to be learned from SQL: Aggregates (2/4)

Aggregates: A mockup syntax proposal:

I Symbolic Set: Expression

{Vars : Pattern}
of a list Vars of variables and a pattern P
(e.g. { ?K : ?X foaf:knows ?K }).

I Aggregate Function: Expression

f {Vars : Pattern}
where

I f ∈ {COUNT ,MIN,MAX ,SUM,TIMES}, and
I {Vars : Pattern} is a symbolic set

(e.g. COUNT{ ?K : ?X foaf:knows ?K })

A. Polleres – SPARQL Extensions and Outlook 9 / 16

Lessons to be learned from SQL: Aggregates (2/4)

Aggregates: A mockup syntax proposal:

I Symbolic Set: Expression

{Vars : Pattern}
of a list Vars of variables and a pattern P
(e.g. { ?K : ?X foaf:knows ?K }).

I Aggregate Function: Expression

f {Vars : Pattern}
where

I f ∈ {COUNT ,MIN,MAX ,SUM,TIMES}, and
I {Vars : Pattern} is a symbolic set

(e.g. COUNT{ ?K : ?X foaf:knows ?K })

A. Polleres – SPARQL Extensions and Outlook 9 / 16

Lessons to be learned from SQL: Aggregates (2/4)

Aggregates: A mockup syntax proposal:

I Symbolic Set: Expression

{Vars : Pattern}
of a list Vars of variables and a pattern P
(e.g. { ?K : ?X foaf:knows ?K }).

I Aggregate Function: Expression

f {Vars : Pattern}
where

I f ∈ {COUNT ,MIN,MAX ,SUM,TIMES}, and
I {Vars : Pattern} is a symbolic set

(e.g. COUNT{ ?K : ?X foaf:knows ?K })

A. Polleres – SPARQL Extensions and Outlook 9 / 16

Lessons to be learned from SQL: Aggregates (2/4)

Aggregates: A mockup syntax proposal:

I Symbolic Set: Expression

{Vars : Pattern}
of a list Vars of variables and a pattern P
(e.g. { ?K : ?X foaf:knows ?K }).

I Aggregate Function: Expression

f {Vars : Pattern}
where

I f ∈ {COUNT ,MIN,MAX ,SUM,TIMES}, and
I {Vars : Pattern} is a symbolic set

(e.g. COUNT{ ?K : ?X foaf:knows ?K })

A. Polleres – SPARQL Extensions and Outlook 9 / 16

Lessons to be learned from SQL: Aggregates (3/4)

I Aggregate Atom: Expression

Agg Atom ::= val } f {Vars : Pattern}
| f {Vars : Conj} } val
| vall }l f {Vars : Pattern} }r valu

where
I val , vall , valu are constants or variables,
I } ∈ {<,>,≤,≥,= },
I }l ,}r ∈ {<,≤}, and
I f {Vars : Pattern} is an aggregate function

(e.g. COUNT{ ?K : ?X foaf:knows ?K } }< 3)

A. Polleres – SPARQL Extensions and Outlook 10 / 16

Lessons to be learned from SQL: Aggregates (3/4)

I Aggregate Atom: Expression

Agg Atom ::= val } f {Vars : Pattern}
| f {Vars : Conj} } val
| vall }l f {Vars : Pattern} }r valu

where
I val , vall , valu are constants or variables,
I } ∈ {<,>,≤,≥,= },
I }l ,}r ∈ {<,≤}, and
I f {Vars : Pattern} is an aggregate function

(e.g. COUNT{ ?K : ?X foaf:knows ?K } }< 3)

A. Polleres – SPARQL Extensions and Outlook 10 / 16

Lessons to be learned from SQL: Aggregates (3/4)

I Aggregate Atom: Expression

Agg Atom ::= val } f {Vars : Pattern}
| f {Vars : Conj} } val
| vall }l f {Vars : Pattern} }r valu

where
I val , vall , valu are constants or variables,
I } ∈ {<,>,≤,≥,= },
I }l ,}r ∈ {<,≤}, and
I f {Vars : Pattern} is an aggregate function

(e.g. COUNT{ ?K : ?X foaf:knows ?K } }< 3)

A. Polleres – SPARQL Extensions and Outlook 10 / 16

Lessons to be learned from SQL: Aggregates (3/4)

I Aggregate Atom: Expression

Agg Atom ::= val } f {Vars : Pattern}
| f {Vars : Conj} } val
| vall }l f {Vars : Pattern} }r valu

where
I val , vall , valu are constants or variables,
I } ∈ {<,>,≤,≥,= },
I }l ,}r ∈ {<,≤}, and
I f {Vars : Pattern} is an aggregate function

(e.g. COUNT{ ?K : ?X foaf:knows ?K } }< 3)

A. Polleres – SPARQL Extensions and Outlook 10 / 16

Lessons to be learned from SQL: Aggregates (3/4)

I Aggregate Atom: Expression

Agg Atom ::= val } f {Vars : Pattern}
| f {Vars : Conj} } val
| vall }l f {Vars : Pattern} }r valu

where
I val , vall , valu are constants or variables,
I } ∈ {<,>,≤,≥,= },
I }l ,}r ∈ {<,≤}, and
I f {Vars : Pattern} is an aggregate function

(e.g. COUNT{ ?K : ?X foaf:knows ?K } }< 3)

A. Polleres – SPARQL Extensions and Outlook 10 / 16

Lessons to be learned from SQL: Aggregates (3/4)

I Aggregate Atom: Expression

Agg Atom ::= val } f {Vars : Pattern}
| f {Vars : Conj} } val
| vall }l f {Vars : Pattern} }r valu

where
I val , vall , valu are constants or variables,
I } ∈ {<,>,≤,≥,= },
I }l ,}r ∈ {<,≤}, and
I f {Vars : Pattern} is an aggregate function

(e.g. COUNT{ ?K : ?X foaf:knows ?K } }< 3)

A. Polleres – SPARQL Extensions and Outlook 10 / 16

Lessons to be learned from SQL: Aggregates (4/4)

Examples of usage:
I Aggregate atoms in FILTERs:

SELECT ?X
WHERE { ?X a foaf:Person .

FILTER (COUNT{ ?K : ?X foaf:knows ?K } }< 3)

I Aggregate atoms in result forms:

SELECT ?X COUNT{ ?K : ?X foaf:knows ?K } }
WHERE { ?X a foaf:Person .)

Implementation:
I The aggregate syntax chosen here is a straight-forward extension of

the aggregate syntax of DLV → implementation possible by a slight
extension of the LP translation with DLV’s aggregates.

Semantics:
I Semantics of Aggregates in LP, even possibly involving recursive

rules agreed [Faber et al., 2004]

A. Polleres – SPARQL Extensions and Outlook 11 / 16

Lessons to be learned from SQL: Aggregates (4/4)

Examples of usage:
I Aggregate atoms in FILTERs:

SELECT ?X
WHERE { ?X a foaf:Person .

FILTER (COUNT{ ?K : ?X foaf:knows ?K } }< 3)

I Aggregate atoms in result forms:

SELECT ?X COUNT{ ?K : ?X foaf:knows ?K } }
WHERE { ?X a foaf:Person .)

Implementation:
I The aggregate syntax chosen here is a straight-forward extension of

the aggregate syntax of DLV → implementation possible by a slight
extension of the LP translation with DLV’s aggregates.

Semantics:
I Semantics of Aggregates in LP, even possibly involving recursive

rules agreed [Faber et al., 2004]

A. Polleres – SPARQL Extensions and Outlook 11 / 16

Lessons to be learned from SQL: Aggregates (4/4)

Examples of usage:
I Aggregate atoms in FILTERs:

SELECT ?X
WHERE { ?X a foaf:Person .

FILTER (COUNT{ ?K : ?X foaf:knows ?K } }< 3)

I Aggregate atoms in result forms:

SELECT ?X COUNT{ ?K : ?X foaf:knows ?K } }
WHERE { ?X a foaf:Person .)

Implementation:
I The aggregate syntax chosen here is a straight-forward extension of

the aggregate syntax of DLV → implementation possible by a slight
extension of the LP translation with DLV’s aggregates.

Semantics:
I Semantics of Aggregates in LP, even possibly involving recursive

rules agreed [Faber et al., 2004]

A. Polleres – SPARQL Extensions and Outlook 11 / 16

Lessons to be learned from SQL: Aggregates (4/4)

Examples of usage:
I Aggregate atoms in FILTERs:

SELECT ?X
WHERE { ?X a foaf:Person .

FILTER (COUNT{ ?K : ?X foaf:knows ?K } }< 3)

I Aggregate atoms in result forms:

SELECT ?X COUNT{ ?K : ?X foaf:knows ?K } }
WHERE { ?X a foaf:Person .)

Implementation:
I The aggregate syntax chosen here is a straight-forward extension of

the aggregate syntax of DLV → implementation possible by a slight
extension of the LP translation with DLV’s aggregates.

Semantics:
I Semantics of Aggregates in LP, even possibly involving recursive

rules agreed [Faber et al., 2004]

A. Polleres – SPARQL Extensions and Outlook 11 / 16

Lessons to be learned from SQL: Aggregates (4/4)

Examples of usage:
I Aggregate atoms in FILTERs:

SELECT ?X
WHERE { ?X a foaf:Person .

FILTER (COUNT{ ?K : ?X foaf:knows ?K } }< 3)

I Aggregate atoms in result forms:

SELECT ?X COUNT{ ?K : ?X foaf:knows ?K } }
WHERE { ?X a foaf:Person .)

Implementation:
I The aggregate syntax chosen here is a straight-forward extension of

the aggregate syntax of DLV → implementation possible by a slight
extension of the LP translation with DLV’s aggregates.

Semantics:
I Semantics of Aggregates in LP, even possibly involving recursive

rules agreed [Faber et al., 2004]

A. Polleres – SPARQL Extensions and Outlook 11 / 16

CONSTRUCT 1/3

CONSTRUCTs themselves may be viewed as rules over RDF.
How to handle CONSTRUCT in the outlined translation to LP?

CONSTRUCT { ?X foaf:name ?Y . ?X a foaf:Person . }
WHERE { ?X vCard:FN ?Y }.

For blanknode-free CONSTRUCTs our translation can be simply
extended:

triple(X,foaf:name,Y,constructed) :-
triple(X,rdf:type,foaf:Person,default).

and export the RDF triples from predicate

triple(S,P,O,constructed)

in post-processing to get the constructed RDF graph

A. Polleres – SPARQL Extensions and Outlook 12 / 16

CONSTRUCT 1/3

CONSTRUCTs themselves may be viewed as rules over RDF.
How to handle CONSTRUCT in the outlined translation to LP?

CONSTRUCT { ?X foaf:name ?Y . ?X a foaf:Person . }
WHERE { ?X vCard:FN ?Y }.

For blanknode-free CONSTRUCTs our translation can be simply
extended:

triple(X,foaf:name,Y,constructed) :-
triple(X,rdf:type,foaf:Person,default).

and export the RDF triples from predicate

triple(S,P,O,constructed)

in post-processing to get the constructed RDF graph

A. Polleres – SPARQL Extensions and Outlook 12 / 16

CONSTRUCT 1/3

CONSTRUCTs themselves may be viewed as rules over RDF.
How to handle CONSTRUCT in the outlined translation to LP?

CONSTRUCT { ?X foaf:name ?Y . ?X a foaf:Person . }
WHERE { ?X vCard:FN ?Y }.

For blanknode-free CONSTRUCTs our translation can be simply
extended:

triple(X,foaf:name,Y,constructed) :-
triple(X,rdf:type,foaf:Person,default).

and export the RDF triples from predicate

triple(S,P,O,constructed)

in post-processing to get the constructed RDF graph

A. Polleres – SPARQL Extensions and Outlook 12 / 16

CONSTRUCT 2/3

More interesting: With this translation, we get for free a way to
process mixed RDF and SPARQL CONSTRUCTs in ONE file.

Mock-up syntax, mixing TURTLE and SPARQL to describe
implicit data or mappings within RDF1:

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".
CONSTRUCT{ :me foaf:knows ?X }
FROM <http://www.deri.ie/about/team>
WHERE { ?X a foaf:Person. }
:me foaf:knows [foaf:name "Marcelo Arenas"],

[foaf:name "Claudio Gutierrez"],
[foaf:name "Bijan Parsia"],
[foaf:name "Jorge Perez"],
[foaf:name "Andy Seaborne"].

1see e.g. RIF use case 2.10, http://www.w3.org/TR/rif-ucr/
A. Polleres – SPARQL Extensions and Outlook 13 / 16

http://www.w3.org/TR/rif-ucr/

CONSTRUCT 2/3

More interesting: With this translation, we get for free a way to
process mixed RDF and SPARQL CONSTRUCTs in ONE file.

Mock-up syntax, mixing TURTLE and SPARQL to describe
implicit data or mappings within RDF1:

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".
CONSTRUCT{ :me foaf:knows ?X }
FROM <http://www.deri.ie/about/team>
WHERE { ?X a foaf:Person. }
:me foaf:knows [foaf:name "Marcelo Arenas"],

[foaf:name "Claudio Gutierrez"],
[foaf:name "Bijan Parsia"],
[foaf:name "Jorge Perez"],
[foaf:name "Andy Seaborne"].

1see e.g. RIF use case 2.10, http://www.w3.org/TR/rif-ucr/
A. Polleres – SPARQL Extensions and Outlook 13 / 16

http://www.w3.org/TR/rif-ucr/

CONSTRUCT 2/3

More interesting: With this translation, we get for free a way to
process mixed RDF and SPARQL CONSTRUCTs in ONE file.

Mock-up syntax, mixing TURTLE and SPARQL to describe
implicit data or mappings within RDF1:

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".
CONSTRUCT{ :me foaf:knows ?X }
FROM <http://www.deri.ie/about/team>
WHERE { ?X a foaf:Person. }
:me foaf:knows [foaf:name "Marcelo Arenas"],

[foaf:name "Claudio Gutierrez"],
[foaf:name "Bijan Parsia"],
[foaf:name "Jorge Perez"],
[foaf:name "Andy Seaborne"].

1see e.g. RIF use case 2.10, http://www.w3.org/TR/rif-ucr/
A. Polleres – SPARQL Extensions and Outlook 13 / 16

http://www.w3.org/TR/rif-ucr/

CONSTRUCT 3/3

Attention! If you apply the translation to LP and two
RDF+CONSTRUCT files refer mutually to each other, you might
get a recursive program!

I even non-stratified negation as failure!
I two basic semantics for such “networked RDF graphs”

possible:
I well-founded [Schenk and Staab, 2007]
I stable [Polleres, 2007]

A. Polleres – SPARQL Extensions and Outlook 14 / 16

etc., etc.

These were just some ideas for useful extensions!
More to come! Up to you!

Opens up interesting research directions!

A. Polleres – SPARQL Extensions and Outlook 15 / 16

etc., etc.

These were just some ideas for useful extensions!
More to come! Up to you!

Opens up interesting research directions!

A. Polleres – SPARQL Extensions and Outlook 15 / 16

etc., etc.

These were just some ideas for useful extensions!
More to come! Up to you!

Opens up interesting research directions!

A. Polleres – SPARQL Extensions and Outlook 15 / 16

etc., etc.

These were just some ideas for useful extensions!
More to come! Up to you!

Opens up interesting research directions!

Now let’s get back to the next logical step. . .

XML Namespaces

RDF Core

RDFS

Unicode URI

Ontologies (OWL)Rules

S
P

A
R

Q
L

A. Polleres – SPARQL Extensions and Outlook 15 / 16

etc., etc.

These were just some ideas for useful extensions!
More to come! Up to you!

Opens up interesting research directions!

Now let’s get back to the next logical step. . .
. . . how to combine with OWL and RDFS?

XML Namespaces

RDF Core

RDFS

Unicode URI

Ontologies (OWL)Rules

S
P

A
R

Q
L

A. Polleres – SPARQL Extensions and Outlook 15 / 16

etc., etc.

These were just some ideas for useful extensions!
More to come! Up to you!

Opens up interesting research directions!

Now let’s get back to the next logical step. . .
. . . how to combine with OWL and RDFS?

XML Namespaces

RDF Core

RDFS

Unicode URI

Ontologies (OWL)Rules

S
P

A
R

Q
L

As it turns out, not so simple! Bijan, the stage is yours!

A. Polleres – SPARQL Extensions and Outlook 15 / 16

References

Faber, W., Leone, N., and Pfeifer, G. (2004).

Recursive aggregates in disjunctive logic programs: Semantics and complexity.
In Alferes, J. J. and Leite, J., editors, Proceedings of the 9th European Conference on Artificial Intelligence
(JELIA 2004), number 3229 in Lecture Notes in AI (LNAI), pages 200–212. Springer Verlag.

Polleres, A. (2007).

From SPARQL to rules (and back).
In Proceedings of the 16th World Wide Web Conference (WWW2007), Banff, Canada.
Extended technical report version available at
http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf.

Schenk, S. and Staab, S. (2007).

Networked rdf graph networked rdf graphs.
Technical Report 3/2007, Universsity of Koblenz.
available at http://www.uni-koblenz.de/~sschenk/publications/2006/ngtr.pdf.

A. Polleres – SPARQL Extensions and Outlook 16 / 16

http://www.polleres.net/publications/GIA-TR-2006-11-28.pdf
http://www.uni-koblenz.de/~sschenk/publications/2006/ngtr.pdf

	Translation to LP, a bit more formal
	Next steps? Some possible Examples
	Lessons to be learned from SQL?
	Nested queries -- Nesting ASK
	Aggregates

	Lessons to be learned from Datalog, Rules Languages, etc. ?
	Use SPARQL as rules
	Mixing data and rules -- Recursion?

