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Translation to LP, a bit more formal

Given a query q = (V ,P,DS), DS = (G ,GN)

SELECT V
FROM G
FROM NAMED GN

WHERE P

we denote by Πq the logic program obtained by the translation
sketched in the previous Unit, where we give the auxiliary
predicates non-ambiguous names, i.e. answeriq.

Then, the extension of the predicate answer1q contains all answer
substitutions for q.
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Example: q1 = ( {?E , ?N},
(((?X : name ?N) OPT (?X : email ?E ))),
({http : //alice.org}, ∅) )

SELECT ?N ?E
FROM <http://alice.org>
WHERE { ?X :name ?N

OPTIONAL {?X :email ?E } }

Πq1 =

triple(S,P,O,defaultq1) :- rdf["alice.org"](S,P,O).

answer1q1(E,N,defaultq1) :- triple(X,":name",N,defaultq1),

triple(X,":email",E,defaultq1).

answer1q1(null,N,defaultq1) :- triple(X,":name",N,defaultq1),

not answer2q1(X).

answer2q1(X) :- triple(X,":email",E,defaultq1).

More complex queries are decomposed recursively introducing more auxiliary

predicates for nested sub-patterns: answer2q, answer3q, answer4q1,

answer5q1 , . . .
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Next steps?

Disclaimer: What follows in this unit is a speculative outlook and
does not necessarily reflect the SPARQL working group’s agenda.
We discuss in this unit two starting points for such extensions:

I Lessons to be learned from SQL

I Lessons to be learned from Datalog

Both these partially overlap, and we will discuss how they integrate
with the current SPARQL spec by using the translation from the
previous unit.
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Lessons to be learned from SQL: Nested ASK queries (1/2)

Nested queries are very common in SQL e.g.

SELECT ...FROM WHERE EXISTS ( SELECT ...

a simple and very useful extension for SPARQL could be nesting of
boolean queries (ASK) in FILTERS:

SELECT ...FROM WHERE { P FILTER (ASK PASK) }

So, how could we implement e.g.

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER (!(ASK {?X :email ?E }) ) }

Note that this give a more elegant solution for “set difference” queries

avoiding the OPTIONAL/!bound combination!
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Lessons to be learned from SQL: Nested ASK queries (2/2)

Given query q = (V ,P,DS), with sub-pattern
(P1 FILTER (ASK qASK)) and qASK = (∅,PASK,DSASK):

I modularly translate such sub-queries by extending Πq with Πq′

where q′ = (vars(P1) ∩ vars(PASK),PASK,DSASK))
I let DSASK default to DS if not specified otherwise.

Example:

SELECT ?N

FROM <http://alice.org>

WHERE { ?X :name ?N

FILTER ( !(ASK {?X :email ?E }) ) }

vars(P1) ∩ vars(PASK) = {X}
q′ = ( {?X}, (?X : email?E ), ({http : //alice.org}, ∅) )

Πq:
answer1q′(X) :- triple(X,”:email”,E, default).
answer1q(N) :- triple(X,”:name”,N, default), not answer1q′(X).
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Lessons to be learned from SQL: Aggregates (1/4)

Example Count:

SELECT ?X
FROM <http://example.org/lotsOfFOAFData.rdf>
WHERE { ?X a person .

FILTER (
COUNT{ ?Y : ?X foaf:knows ?Y} > 3

) }

I Possible argument against:
I UNA, closed world!
I Implementation needs to take special care for counting

semantics (duplicates)
I Arguments in favor:

I COUNT is already expressible!
I closed world is already there! (OPTIONAL+!bound)
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Lessons to be learned from SQL: Aggregates (2/4)

Aggregates: A mockup syntax proposal:

I Symbolic Set: Expression

{Vars : Pattern}
of a list Vars of variables and a pattern P
(e.g. { ?K : ?X foaf:knows ?K }).

I Aggregate Function: Expression

f {Vars : Pattern}
where

I f ∈ {COUNT ,MIN,MAX ,SUM,TIMES}, and
I {Vars : Pattern} is a symbolic set

(e.g. COUNT{ ?K : ?X foaf:knows ?K })
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Lessons to be learned from SQL: Aggregates (3/4)

I Aggregate Atom: Expression

Agg Atom ::= val } f {Vars : Pattern}
| f {Vars : Conj} } val
| vall }l f {Vars : Pattern} }r valu

where
I val , vall , valu are constants or variables,
I } ∈ {<,>,≤,≥,= },
I }l ,}r ∈ {<,≤}, and
I f {Vars : Pattern} is an aggregate function

(e.g. COUNT{ ?K : ?X foaf:knows ?K } }< 3)
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Lessons to be learned from SQL: Aggregates (4/4)

Examples of usage:
I Aggregate atoms in FILTERs:

SELECT ?X
WHERE { ?X a foaf:Person .

FILTER ( COUNT{ ?K : ?X foaf:knows ?K } }< 3 )

I Aggregate atoms in result forms:

SELECT ?X COUNT{ ?K : ?X foaf:knows ?K } }
WHERE { ?X a foaf:Person . )

Implementation:
I The aggregate syntax chosen here is a straight-forward extension of

the aggregate syntax of DLV → implementation possible by a slight
extension of the LP translation with DLV’s aggregates.

Semantics:
I Semantics of Aggregates in LP, even possibly involving recursive

rules agreed [Faber et al., 2004]
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SELECT ?X COUNT{ ?K : ?X foaf:knows ?K } }
WHERE { ?X a foaf:Person . )

Implementation:
I The aggregate syntax chosen here is a straight-forward extension of

the aggregate syntax of DLV → implementation possible by a slight
extension of the LP translation with DLV’s aggregates.

Semantics:
I Semantics of Aggregates in LP, even possibly involving recursive

rules agreed [Faber et al., 2004]
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CONSTRUCT 1/3

CONSTRUCTs themselves may be viewed as rules over RDF.
How to handle CONSTRUCT in the outlined translation to LP?

CONSTRUCT { ?X foaf:name ?Y . ?X a foaf:Person . }
WHERE { ?X vCard:FN ?Y }.

For blanknode-free CONSTRUCTs our translation can be simply
extended:

triple(X,foaf:name,Y,constructed) :-
triple(X,rdf:type,foaf:Person,default).

and export the RDF triples from predicate

triple(S,P,O,constructed)

in post-processing to get the constructed RDF graph
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CONSTRUCT 2/3

More interesting: With this translation, we get for free a way to
process mixed RDF and SPARQL CONSTRUCTs in ONE file.

Mock-up syntax, mixing TURTLE and SPARQL to describe
implicit data or mappings within RDF1:

foafWithImplicitdData.rdf

:me a foaf:Person.
:me foaf:name "Axel Polleres".
CONSTRUCT{ :me foaf:knows ?X }
FROM <http://www.deri.ie/about/team>
WHERE { ?X a foaf:Person. }
:me foaf:knows [foaf:name "Marcelo Arenas"],

[foaf:name "Claudio Gutierrez"],
[foaf:name "Bijan Parsia"],
[foaf:name "Jorge Perez"],
[foaf:name "Andy Seaborne"].

1see e.g. RIF use case 2.10, http://www.w3.org/TR/rif-ucr/
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CONSTRUCT 3/3

Attention! If you apply the translation to LP and two
RDF+CONSTRUCT files refer mutually to each other, you might
get a recursive program!

I even non-stratified negation as failure!
I two basic semantics for such “networked RDF graphs”

possible:
I well-founded [Schenk and Staab, 2007]
I stable [Polleres, 2007]
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etc., etc.

These were just some ideas for useful extensions!
More to come! Up to you!

Opens up interesting research directions!
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etc., etc.

These were just some ideas for useful extensions!
More to come! Up to you!

Opens up interesting research directions!

Now let’s get back to the next logical step. . .

XML Namespaces

RDF Core

RDFS

Unicode URI

Ontologies (OWL)Rules

S
P

A
R

Q
L
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More to come! Up to you!

Opens up interesting research directions!

Now let’s get back to the next logical step. . .
. . . how to combine with OWL and RDFS?

XML Namespaces

RDF Core

RDFS

Unicode URI

Ontologies (OWL)Rules

S
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As it turns out, not so simple! Bijan, the stage is yours!
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