
Bachelor Thesis

Implementing a "polite" proxy for

different Web Crawling Use Cases

Patrick Oliver Riemer
Date of Birth: 11.08.1995
Student ID: 1452119

Subject Area: Information Business

Studienkennzahl: J033/561

Supervisor: Prof. Dr. Axel Polleres, Dr. Jürgen Umbrich

Date of Submission: 10.September 2017

Department of Information Systems and Operations, Vienna University of
Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

Contents

1 Introduction 6
1.1 Research question . 8
1.2 Requirements . 8

2 Preliminaries 9
2.1 Hypertext Transfer Protocol 9
2.2 Uniform Resource Locators . 11
2.3 Caching . 12

3 Related work 14

4 Politeness 15
4.1 Politeness Issues . 15
4.2 Crawl delay . 17
4.3 Robots Exclusion Protocol . 18
4.4 Sitemaps . 21
4.5 Different strategies . 22
4.6 Caching . 23
4.7 A variety of use cases . 24

4.7.1 Simple and unsorted scripts 25
4.7.2 Sequential processing 26
4.7.3 Politeness services . 26

5 Implementation 27
5.1 Architecture . 28
5.2 Technology . 29
5.3 Caching . 32
5.4 Web caching . 34
5.5 Robots Exclusion Protocol . 35
5.6 Crawl delay . 36
5.7 Services . 37

5.7.1 Filter services . 37
5.7.2 Complex service . 38

5.8 Configuration . 40
5.9 Configuration at runtime . 41
5.10 Monitoring . 42

6 Evaluation 43

7 Conclusion and further research 46

List of Figures

1 How a URL is transformed through the steps of canonicalization. 12
2 Architectural overview . 29
3 Zuul filter managing politeness, caching and monitoring 31
4 The effect of a delay on the crawling process 44
5 Request time on the y-axis per client, run cycle and URL on

the x-axis . 45
6 Average request time on the y-axis per client and URL on the

x-axis . 46

Abstract

The importance of web crawlers grows with the ongoing expansion
of the World Wide Web. Without web crawlers search engines or web
archives would not exist. Efficient crawling, however, is not possible
without following best practices and obeying politeness rules. Not all
robots crawling the web obey these rules leading to the exhaustive
usage of network and computing resources which can be interpreted
as Denial of Service attacks leading to the blocking of these crawlers.
Our solution tries to overcome these issues by both, enforcing polite-
ness through working as a proxy, and additionally offering services to
check if a URL does not violate the constraints defined by the Robots
Exclusion Protocol. We show a solution, implemented through a proxy,
capable of handling a variety of clients and scenarios, enforce politeness
and enable monitoring and caching without significantly increasing la-
tency.. . .

1 Introduction

The World Wide Web has grown from a few hundred pages at its beginning
to more than a trillion pages in 2008 and has not stopped growing since then.
To make use of this unbelievable amount of data as a human being, we need
help from search engines or nowadays we even rely on artificial intelligence.
However these search engine must get these data from somewhere. The nec-
essary exploration of the web and the extraction of information is done by
programs called web crawlers, also known as robots, bots, wanderers and spi-
ders. A web crawler starts at one page or from a set of pages and extracts all
links to other pages from there. By following and saving all links on its way
through the web a crawler discovers the internet completely automatically in
an iterative and incremental fashion. Whereby a web crawler just navigates
from link to link, the further processing of data is often done at a later point
of time and by different software components.

With the ongoing expansion of the internet, in an exponential form or not
depending on the source[9], the number and diversity of web crawlers is also
growing. Web crawlers are used to collect data for statistical analysis of the
web itself, to collect pages for archive like structures or for search engines
and other indexing applications. With variety and increase in numbers of
crawlers arise certain problems. Crawlers are visiting a variety of domains,
each hosted on different servers and hardware. To prevent unknown crawlers
from the internet from using domains’ resources in an extensive way network
owners undertake several measures. Therefore a crawler must adhere to cer-
tain rules to not get blocked or get hindered at its work. Small scripts or
other naive implementations iterating through pages and links do not follow
these rules and will be blocked if accessing content they are not allowed to
access or by simply overloading domains by requesting hundreds of pages in
seconds.

On the other side more sophisticated web crawlers respect these rules, are
polite and respect robots.txts or sitemaps [3], but come with a different set
of problems. Here scheduling and performance problems exist. To just grasp
a small part of the web one crawler would need an unacceptable long times-
pan. Although using more than one crawler, maybe even at overlapping or
identical domains needs scheduling solutions to avoid getting blocked while
crawling efficiently at the same time. Each web crawler on its own might be
polite. However this does not ensure politeness when several crawlers oper-
ate on the same domain because overall they are violating certain constraints.

At the Vienna University of Economics and Business there exist several
kinds of crawlers and scenarios when politeness needs to be enforced and
monitored. Students write simple scripts as part of lab courses or out of
curiosity. Here the absent politeness and missing scheduling are quite urgent
problems. Then there are clients like XQuery1 demanding the sequential
handling of HTTP requests during its operations. Other existing crawlers
already implement scheduling and politeness mechanisms, but have to cope
with more complex scheduling problems and the overall politeness of operat-
ing several independent crawlers. All these quite different implementations
and the arising challenges have to be handled:

• Enforcement of politeness for all use cases

• Sequential handling of web requests where needed

• Enable caching for already fetched data

• Monitor performance and gather operational metrics

• Distributable operation of crawlers

As solution we suggest the implementation of a crawling service archi-
tecture. An implementation following an service oriented approach would
support both naive crawlers and more sophisticated ones. Simple crawlers or
even clients without any real crawling logic can use our solution in a proxy
like way. Every request is routed through that proxy. Before each request is
executed the proxy checks if any politeness constraints are violated. If not
the request is executed and the client gets the respective response. Otherwise
the proxy informs the client with a special error code.

More sophisticated crawlers might use our solution too, as a kind of proxy
to ensure politeness. Furthermore the service will offer the possibility to sub-
mit a set of seed URLs. This list of URLs gets checked in terms of politeness
violations and the URLs allowed to be crawled get returned to the client.
This offers these kind of clients the possibility to ensure politeness, but to
manage the crawling process on their own.

Ensuring politeness is not the only feature our solution is offering. There
are issues common to all kinds of crawlers besides managing politeness.
Caching is one of it. If there are independent implementations crawling
on overlapping or identical domains it is possible to cache crawled results

1
https://www.w3.org/XML/Query/

to make them accessible to future requests considering page updates. This
can significantly reduce the time needed and the consumption of network
resources.

Section 2 explains basic technological aspects related to our research ef-
forts. In Section 3 we provide an overview of the current state of related
work in literature and in commmercial use cases. In Section 4 we go more
into detail about the underlying requirements and issues our implementation
must offer a solutions for. We also summarise the theoretical background,
ways to ensure politeness and related work done. In Section 5 we describe
our technical solution to support a variety of clients and forms of requests
and how our solution ensures politeness and enables caching. In Section 6
we examine the limitations of our solution and provide an outlook on further
research and close by sharing our conclusions.

1.1 Research question

According to the various problems and tasks stated above the research ques-
tion we are answering is:

"How can a solution, enabling the configurable and scalable enforcement of
politeness for a diverse range of web crawling use cases, be implemented fol-
lowing a service oriented approach using Java?"

It is intended to implement a crawling service kind approach using the
technologies and strategies described in the next section. It should support
all the kinds of implementations as described before while simultaneously
handling their implementation-specific weaknesses and enabling new features
in a centralised and service oriented way. We believe that a service oriented
approach is the best option here to handling various use cases at once by
offering a uniform interface and proxy like behaviour.

1.2 Requirements

Based on the research question our service has to fulfil a set of requirements
and a list of additional, not mandatory features which would improve the
final solution, but are not part of the fundamental use cases. Both, require-
ments and additional features, can be organised in work packages. These
work packages are going to be implemented in implementation cycles of our
iterative prototyping approach. Work package 1 to 4 are mandatory fea-
tures to support all three groups of clients in an efficient manner. The other

work packages are additional features, improving performance via caching,
enabling monitoring and statistics, and advanced politeness strategies and
distributed crawling. The resulting list of work packages ordered by impor-
tance are:

1. Implementation of a proxy for simple and unsorted scripts (first use
case)

2. Enforcement of politeness via configuration of crawl delay and Robots
Exclusion Protocol

3. Enable sequential processing of responses (second use case)
4. Implementation of services auditing politeness (third use case)
5. Enable configuration at runtime
6. Implementation of caching
7. Improve enforcement of politeness via measuring the download rate of

a domain using HEAD requests
8. Improve enforcement of politeness via page popularity and alternative

strategies
9. Enable clustering and distributed crawling

10. Enable automatic provision of statistics

2 Preliminaries

Our research and the problems we are trying to solve in this work are both
heavily related to the World Wide Web. This paper assumes basic knowledge
about TCP and the internet in general. We also assume the reader to be
familiar with the basic concepts of HTTP and Java. This section provides
an overview over knowledge areas related to our work.

2.1 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is the foundation of communi-
cation for the World Wide Web. Whenever a user opens a homepage and
therefore looks up data in hypertext, HTTP is used. Hypertext is basically
text with so called hyperlinks, references to other text which the reader can
follow. A web crawler behaves more or less the same as the average internet
user. A robot opens a page, looks through the hypertext and eventually fol-
lows the contained hyperlinks[18, p. 1].

HTTP is based on request-response conversations. A client sends a re-
quest to the server expecting an appropriate response containing the re-
quested resource or an error message. A HTTP message consists of a header
and a body (Listing 2 shows a sample response containing both header and
body separated by an empty line). The message header contains meta infor-
mation like request method, path, protocol, status code and an additional
set of HTTP header fields. Whereas the body can be omitted, depending
on the request method used (Listing 1 gives an example for a GET request
without a body). The HTTP protocol defines a number of methods to define
the action to be performed on the target resource. Following are the, for this
paper, most important methods[18, pp. 51-55]:

• GET - Requests a representation of the target resource usually without
mutation of any data.

• HEAD - Requests the same resource as GET, but without the response
body, to only fetch the HTTP response headers.

• POST - Requests that the server stores the entity enclosed in the
request body under the given URL.

GET / index . html HTTP/2
Host : tw i t t e r . com
Accept : ⇤/⇤

Listing 1: Sample HTTP request

HTTP/2 200
cache�c o n t r o l : no�cache , no�s t o r e
content�encod ing : d e f l a t e
content�type : t ex t /html ; cha r s e t=utf�8
da t e : Thu , 15 Aug 2017 05 : 5 9 : 0 9 GMT
exp i r e s : Tue , 31 Mar 1981 05 : 0 0 : 0 0 GMT
la s t�mod i f i ed : Thu , 15 Aug 2017 05 : 5 9 : 0 9 GMT

<!DOCTYPE html>
<html lang="de">

<head>
. . .

</head>
<body>
. . .

</body>
</html>

Listing 2: Sample HTTP response

The header part of a message does also contain a list of partly standard-
ised HTTP headers, each defined in a new line, after the first to lines of a
request, or respectively the first line of a response. These headers are used
to transport additional meta information over HTTP. As the example re-
sponse message given in Listing 2 shows, these fields are used to define the
content type and the encoding of the message. However not all header fields
are standardised and principally a message can contain any text as key-value
pair [18, pp. 100-112].

2.2 Uniform Resource Locators

Uniform Resource Locators (URLs) are a specific type of Uniform Resource
Identifiers (URIs) used to uniquely identify resources on the web. Each
URL references a resource by specifying its location and the protocol to
retrieve it. A typical URL has the form http://www.google.com/index.html,
indicating the protocol (HTTP), the hostname (www.google.com) and the
path (index.html). However the generic scheme of an URL is of the form
scheme:[//host[:port]][/path][?query][#fragment]. The scheme in most crawl-
ing use cases is HTTP or HTTPS. The host may be an IP address or a host-
name. The path has the same format as a typical filepath, compromising of
a hierarchy separated by slashes. Non-hierarchical data can be sent through
a query string, which is separated by a preceding question mark. A fragment
is separated from the preceding party by a hash, identifying a specific sec-
ondary resource, like a heading of an HTML document[5, pp. 1-18][4, pp.
3-12].

Each resource on the web can be uniquely identified through an URL, yet
different URLs may identify the same page. Two URLs for instance identify
the same webpage although being different through their fragment or query
part. These duplicate identifiers This would result in duplicates decreasing
the effect of any caching efforts. Levene. et al provides a set of operations
and steps to map different URLs onto canonical forms, which is illustrated
by Figure 1. He also emphasises to follow the set of canonicalization rules
consistently, otherwise they will not have the desired effect[26, pp. 159-160].

1. Convert the URL to lowercase.

2. Remove any trailing "/".

3. Remove the anchor tag of the URL.

4. Encode commonly used characters such as " " or German umlauts.2

5. Remove default starting pages of URLs such as index.html or index.html.
These are commonly used as the entry point of a website.

6. Remove any path navigation operators such as "." or "..".

7. If the URL does not contain a special port remove port 80.

Figure 1: How a URL is transformed through the steps of canonicalization.

2.3 Caching

Among the possibilities to improve the performance of information systems,
almost nothing is as effective as the implementation of caching. A cache is a
temporary storage of web objects, such as HTML pages and XML documents,
for later retrieval. Caching is claimed to have several advantages[13, pp. 1-
2][42, pp. 36-37][20, p. 91][33, p. 6]:

1. Reduction of consumed bandwidth because fewer requests and responses
are sent over the underlying network infrastructure.

2
https://www.w3schools.com/tags/ref_urlencode.asp

2. Reduction of the server load because duplicates are not fetched more
than once, but are cached in beforehand resulting in fewer requests to
handle.

3. Reduction of latency because cached objects are immediately available.
4. Higher Politeness due to reduced amount of traffic between source and

target domain.

Using a cache also has some drawbacks, mainly the potential return of an
already outdated object stored in the cache instead of obtaining the current
version from the source. To avoid this inconsistency it must be defined which
data is allowed to be cached and for how long it can be cached. Moreover,
using a cache increases latency in case of a cache miss. At first every request
is checked if it can be serviced directly from the cache, if the data is not
cached already, it must be retrieved after the cache lookup. Therefore a high
as possible hit rate is favourable to avoid the increased latency of a cache
miss, whereas the hit rate is the ratio of requests satisfied by the cache [33,
p. 6].

A client may want to explicitly request a freshly retrieved page bypassing
eventual caching mechanisms. Normally this is done by including the header
field Cache-Control in the HTTP request header. It can be used to specify
directives for caches along the request/response chain. Allowing a client to
specify the conditions under which he accepts a cached response or a server
to declare if and how long a response is allowed to be cached. The field sup-
ports various different directives, each leading to different caching behaviour.
However, as our solution takes the server’s part when communicating with
our crawling clients we will only consider the relevant Request Cache-Control
directives [17, pp. 21-28]:

• max-age=<seconds> - The client only accepts a cached response
whose lifetime does not exceed the specified number in seconds, except
if max-stale is also given.

• max-stale=<seconds>? - The client is willing to accept a cached
response whose freshness lifetime does not exceed the specified number
in seconds, or generally accepts it if no number is specified.

• min-fresh=<seconds> - The client only accepts a cached response
whose freshness lifetime is no less than its age plus the specified number
in seconds.

• no-cache - The client only accepts a cached response if it is validated
again beforehand.

• no-store - The cache must not store any information about the request
or the response in non-volatile storage and make a best-effort to remove
it from volatile storage afterwards.

• only-if-cached - The client only accepts a cached response, or a re-
sponse with the 504 (Gateway Timeout) status code.

According to HTTP/1.1 the freshness lifetime of a response is defined
as the time between its generation by the origin server and its expiration
time. This expiration time can be specified through the Expires field in the
response header containing a date in HTTP time stamp format (or as Java
date and time pattern string: "EEE, dd MMM yyyy HH:mm:ss z"). If this
date lies in the past, the response can be considered as already stale, although
it can be cached because the expiration time is ignored if a client uses the
max-stale directive. An alternative is the usage of the max-age directive in
a response, here the specified number of seconds dictates the lifetime of a
cached object[17, pp. 10-27].

3 Related work

The basic architecture of web crawlers has already been described in detail
in a number of papers. Henrique et al. (2011) and Dixit and Sharma (2010)
explain the basic structure of a web crawler and what the necessary compo-
nents are. That a basic implementation consists of the crawler itself, an URL
extractor or parser, an URL database and an interface for clients to retrieve
collected data.

Bouras et al. (2005) and Cho and Garcia-Molina (2000) describe in brief
the problems according to politeness and how to solve this issue by setting
appropriate crawl delays. Crawl delays are the most common form to ensure
politeness, also mentioned by Shkapenyuk and Suel (2002) and mentioned in
the work of Dill et al. (2002) and Castillo et al. (2004). Whereas Thelwall
and Stuart (2006) provide a brief overview of the four types of issues raised
by web crawlers lacking politeness measures.

However most details about implementation and design of commercial
web crawlers are not public. The most influential systems today, the sys-
tems used at Google, Microsoft or Amazon are among them. However there
are some high sophisticated crawlers, whose structure has been made public.
Like the work of Boldi et al. (2004) to implement the scalable and fully dis-
tributed web crawler called UbiCrawler. However the most popular crawling

implementation in literature is the IRLbot by Lee at al. (2009), which is
fully scalable up to 6 billions of web pages and beyond.

The objective of our research goes beyond the task of coordinated web
crawling, be it distributed, scalable or not. There has little to nothing work
done, regarding the enforcement of politeness not by the crawling system
itself, but through a dedicated and transparent component in the form of a
proxy or web services, depending on the use case.

4 Politeness

In this section we explain the term politeness and why it is necessary for the
efficient operation of a web crawler. We also describe the constraints and
dangers if crawling without being polite. There are several ways and proto-
cols which are used to enforce politeness like the Robots Exclusion Protocol,
defining rules and restrictions for web crawlers. Additionally we summarise
other strategies and algorithms like PageRank to improve politeness. The
section also deals with another important feature of our research, caching.
The caching of retrieved web pages can improve performance and politeness
significantly if used in an environment with a higher number of clients. How-
ever caching also comes with its own rules and directives to follow, defined
by convention and RFCs, which are also described below. Last but not least
we explain the different groups of use cases, our solution has to handle and
how they differ from each other.

4.1 Politeness Issues

The never ending expansion of the internet does not only mean that the vast
number of websites and domains is growing. It also results in much bigger
domains. A crawler has to perform more requests to grasp all pages or to
keep the already crawled data up to date. On the other side network re-
sources and bandwidth are limited goods. Popular domains usually can cope
with the amount of traffic generated by a greater number of users at the same
time. They can also handle the additional traffic generated by web crawlers.
However there are many domains out there not backed by this amount of
costly infrastructure.

At the beginning of the history of web crawling, crawlers were written by
computer science researchers, which were aware of network and computing
characteristics and who were capable of the crawling impact. Today, how-

ever, crawlers are easily accessible for a wide range of people, and are not
solely restricted to academic and research areas. Individuals and commercial
users may not be aware of some issues coming with falsely configured and
operating crawlers. Many small and private crawlers lead to medium use
of network resources, but in higher number. Additionally there is no form
of contract or convention possible to protect domains against abuses [40, p.
1774].

In general Thelwall and Stuart (2006) describe four types of issues raised
by web crawlers, irrespectively if they are operated by research or commercial
institutions or by private persons. These are:

1. Denial of Service

2. Cost

3. Privacy

4. Copyright

Denial of service, not be confused with the criminal pendant, describes the re-
duction of the availability of an entire information system or specific services.
Servers that are busy processing incoming requests from web crawlers may
not be able to respond to regular users because capacities are exhausted, or
the experienced latency of regular users is much worse. Therefore it is possi-
ble for web crawlers, unintended or not, to financially harm target domains,
or at least to harm the reputation of the owning institution. The second
issue, cost, plays much less of a role now, than in the last decades. Missing
bandwidth is not that a critical problem anymore. Almost every host offers
plans with unlimited download traffic per month, lessens the impact addi-
tional traffic of web.

However privacy and copyright, the last two issues, are closely coupled
and are currently gaining much more attention. Not every information on the
Web can be used without consent of its owner. Most crawlers are saving data
without checking for copyright issues or asking if the owner of a crawled do-
main for approval. Domain owners can take some counter measures to signal
web crawlers to do not crawl a domain. In hindsight of changes throughout
the last couple of years, we will concentrate on the two most important is-
sues: copyright and denial of service [40, pp. 1773].

Even small scripts running on a common notebook can issue requests
at an enormous rate. Simple loops can issue several thousand requests per

minute. If these requests get not served by a cache, but result in database
look ups or heavy computing, a crawling process can become a denial of ser-
vice attack. Especially archives consist of a big amount of pages, while at
the same time are not frequently used by a high number of users, making big
infrastructure unnecessary. Poor network performance is not the only reason
for crawlers to get blocked. Bigger institutions and companies protect their
networks with Intrusion Detection Systems and Firewalls. These will block a
source address automatically if it would issue hundreds of requests in parallel.
Therefore it is quite common for such ill-behaving crawlers to get blocked by
the target domain. This, of course, makes further crawling impossible for a
specific time, ranging from a few hours to being blocked forever[11, p. 10][37,
p.7].

This can be avoided by throttling the rate a crawler performs its requests
with. However this can lead to starvation of the crawler itself. If the crawling
rate gets throttled too much, the amount of URLs to be crawled for a spe-
cific domain can be overwhelming, leading to buffer and memory overflows
due to congestion. Additionally a rate that slow would render every crawler
useless. Such a crawler, performing one request per minute, would need over
two months to crawl a domain like our university’s (wu.ac.at) which has over
98,200 pages currently indexed by Google according to northcutt.com3. A
crawler hindered by its own politeness restrictions is then faced with a deci-
sion to discard a fraction of its workload, ignore its restrictions or to suffer
significant performance down break. Not a single one of these options is par-
ticularly desirable. [25, p. 3] Politeness, therefore, is basically a trade-off.
The rate at which requests are done must be balanced between not exhaust-
ing the target domain and performing at an acceptable speed. Our solution
has to consider this trade off to do not get blocked on the one side and to do
not become a bottleneck for the respective clients on the other. Therefore
strategies must be found, solving these issues.

4.2 Crawl delay

The most fundamental form of implementing politeness is the crawl delay.
It is the time span between two requests, or between two requests issued to
the same domain. This ensures that the resources of the target address are
not used in an exhaustive way. The delay itself can be set taking several pa-
rameters into account, ranging from simple guessing to highly mathematical

3
https://northcutt.com/tools/free-seo-tools/google-indexed-pages-checker/

approaches. Our implementation should support a variety of these strategies
to be flexible enough to react to changed requirements or changes of what-
ever reason. To have basic politeness restrictions it should be possible to
configure initial delays for domains and a default delay, if the delay for the
current domain is not specified.

The delay must be set with special care. As already described, a delay set
too low can render the whole mechanism useless and a delay set too high can
slow done every crawling procedure. The delay used in literature varies a lot.
Some authors experienced no issued using a delay of only one second [16, p.
215][41, p. 12], others have used 30 seconds and more to do not run into any
problems [1, p. 5]. However, even back in 2004 the anecdotal evidence from
access logs showed that delays are varying between 20 seconds and several
minutes. [10, p. 3] Therefore we will use a delay of 1 second here, simply be-
cause it seems like a suitable trade-off between speed and safety. This delay
is taken into account if two requests will hit the same target domain, if these
are different, we draw the conclusion that both domains are independent,
making immediate crawling possible.

To cope with the never ending expansion of the Web itself, crawlers be-
came heavily distributed in the past. This allows institutions like Google
to open thousands of connections simultaneously. However not only should
each part node in such a system should enforce a certain delay between two
requests to the same host, such a system should never open more than one
connection at a time to the same host in general [10, p. 4][8, p. 3][29, p.1][28,
p. 1].

4.3 Robots Exclusion Protocol

Politeness does not only describes a crawler avoiding to use network resources
in an exhaustive way. At some point of time a mechanism was needed to
overcome the copyright issue described above, and to give domain owners
the possibility to restrict page access and control web crawlers accessing
their sites in general. This was the birth of the Robots Exclusion Protocol
on 30 June 1994 on the robots mailing list, between the majority of robot
authors and other people with an interest in robots. The protocol itself is
not a official standard per se, it is also not owned by anyone and it is also
not enforced. It is an informal agreement between domain owners on one
side and web crawler owners on the other. The ’exclusion’ part of the name
also hints on the reason for the protocol. Back in 1993 and 1994 the number
of web crawlers was increasing, whereby a part of crawled sites where they

weren’t welcome. So a solution had to be found to exclude robots from areas
or in extreme cases from whole domains [34].

The proposed way to declare instructions for web crawlers is a simple file
with media type "text/plain" accessible via HTTP under the root path of
the domain that the instructions are to be applied to. A famous example
for such a location would be www.google.com/robots.txt. If such a file can be
found, the contained instructions must be parsed and followed accordingly.
If such a file cannot be found a robot can principally visit every site of the
domain it comes across, without any limitations (although a delay should be
implemented, no matter the access restrictions). If the response code is in-
dicating access restrictions (HTTP status code 401 or 403) the robot should
regard access to the site as completely restricted. If the retrieval has failed
because of a temporary failure the crawling process should be postponed unit
the robots.txt can be retrieved [23, pp. 2-3].

According to the original Internet-Draft of December 4, 1996 the pro-
tocol consists of three different keywords, User-agent, Allow and Disallow.
Whereas the file itself consists of several blocks, separated by User-agent di-
rectives. This allows the author to define directives only for web crawlers
matching the given name, or any crawler if the wildcard character ’*’ is used.
Every line of a robots.txt file has the same structure: <Field> ":" <value>.
The Allow and Disallow lines indicate whether a robot is allowed or disal-
lowed to access a URL matching the given path. Whereas a Allow directive
is only needed if one wants to unblock a URL of a otherwise blocked parent
directory [34] [23, pp. 4-6].

A robots.txt file is a simple text file, without any validation measures,
compile time checks or similar. Therefore it is possible that more than one
path would match, or both Allow and Disallow is defined for the same path.
However the protocol states, that the most exclusive rule should take effect.
Therefore our implementation has to parse and check all defined rules for
a given path, until a Disallowed rule is found. Only if no such rule can be
found and there is no rule left to evaluate, then the path is allowed to be
crawled.

#Google Search Engine Robot
User�agent : Googlebot
Al low: /?_escaped_fragment_

Di sa l l ow : / search / r ea l t ime
D i s a l l ow : / search / us e r s
D i s a l l ow : /⇤?
D i s a l l ow : /⇤/ f o l l ow e r s

Every bot that might po s s i b l y read and r e sp e c t t h i s
f i l e .

User�agent : ⇤
Allow: /⇤? lang=
Allow: /hashtag /⇤? s r c=
Allow: / search ?q=\%23
D i s a l l ow : / search / r ea l t ime
D i s a l l ow : / search / us e r s
D i s a l l ow : / search /⇤/ g r id

D i s a l l ow : /⇤?
D i s a l l ow : /⇤/ f o l l ow e r s
D i s a l l ow : /⇤/ f o l l ow i n g

Wait 1 second between s u c c e s s i v e r eque s t s . See
ONBOARD�2698 f o r d e t a i l s .

Crawl�de l a y : 1

Independent o f user agent . Links in the sitemap are
f u l l URLs us ing h t t p s : // and need to match

the p ro to co l o f the sitemap .
Sitemap: h t t p s : // tw i t t e r . com/ sitemap . xml

Listing 3: Excerpt of the robots.txt of www.twitter.com Accessed: 25.07.2017

The initial draft only declared three different directives. As years were
going by this proved as not sufficient anymore, authors needed to share more
information with web crawlers to improve efficiency. Listing 3 shows the most
common protocol extensions additional to the original ones. The excerpt con-
tains directives for Googlebot, the name of the robot used by Google, and
different directives for all other web crawlers, each section coming with its
own Disallow and Allow directives. Nowadays it is not uncommon to include
comments (lines starting with ’#’) to simplify versioning and administration.

One way to overcome the issues of predicting the correct delay between
requests while crawling is to use the one declared in the robots.txt if it ex-
ists. The Crawl-delay directive is also an extension of the protocol and it

is not guaranteed that every crawler respects it. However it can be used
to provide a hint for the desired crawling delay, given in seconds a crawler
should wait between two requests. The Crawl-delay directive is not declared
in the majority of cases, but if it is given it should be used. This also holds
true for our proposed implementation of politeness enforcement [39, p. 1124].

A text file is not the only way to define directives for crawlers accessing
a domain. One can use <meta> tags inside of web pages to control (mis-
behaving robots can ignore this too of course) if the respective page will be
indexed. Such a line of HTML code has the following format: <META
NAME="ROBOTS" CONTENT="NOINDEX,NOFOLLOW">. A polite
crawler must parse these meta lines and use the more restricting directives if
there are collisions with the robots.txt file. The format is not standardised.
Therefore upper and lower case and also whitespaces should not make a sig-
nificant difference. The name attribute identifies the target web crawler, or
affects all web crawlers if ROBOTS is used. The content attribute specifies
the commands. Some of the possible values are [21][38]:

• NOINDEX - prevents the page from being included in the index

• NOFOLLOW - prevents the links found on the page from being followed

• NOARCHIVE - prevents the page from being cached

To parse these <meta> tags it is necessary to read the relevant parts
of fetched web pages. Our implementation will not perform any content
or URL extraction. This is completely done on the client side. Content
extraction would furthermore increase the experienced latency significantly.
Because of these, and the spare usage of this way to declare directives our
implementation will not obey to the rules defined directly in web pages.

4.4 Sitemaps

Another common used extension to the Robots Exclusion Protocol is the
Sitemap directive. Such a directive points to the location of a file of the
Sitemap Protocol. These XML files holds a list of URLs and optional addi-
tional meta data that a crawler may index. This is especially useful if sites of
a domain are not linked together, like archives or newspapers, or if a domain
becomes really big, then it can be possible that crawlers will miss updates or
whole parts to index [12, pp. 691-692][35, pp. 991-993]. Google also made
mentionable extensions here to improve the search quality. For e.g. Google
News it is possible for newspapers to enrich their sitemaps with respective

metadata to improve user experience. The robots.txt of the British newspaper
BBC points to a dedicated sitemap-uk-news-1.xml sitemap4, whose excerpt
is given in Listing 4.
<u r l s e t xmlns=" ht tp : //www. s itemaps . org /schemas/ sitemap /0 .9 "

xmlns:news=" ht tp : //www. goog le . com/schemas/ sitemap�news /0 .9 "

xmlns :v ideo=" ht tp : //www. goog le . com/schemas/ sitemap�video /1 .1 ">

<ur l>

<lo c>ht tp : //www. bbc . co . uk/news/world�europe �40713813</ l o c>

<lastmod>2017�07�25T06:45:34Z</ lastmod>

<news:news>

<news :pub l i c a t i on>

<news:name>BBC News</news:name>

<news: language>en</news: language>

</ news :pub l i ca t i on>

<news:publ i cat ion_date>2017�07�25T06:45:34Z</ news :publ i cat ion_date>

<n ew s : t i t l e>

Pope Franc i s shuts o f f Vatican founta in s amid I t a l y drought

</ n ew s : t i t l e>

</news:news>

</ ur l>

. . .

</ u r l s e t>

Listing 4: Excerpt of a sitemap of BBC dedicated to Google News
http://www.bbc.co.uk/sitemaps/sitemap-uk-news-1.xml Accessed: 25.07.2017

4.5 Different strategies

A well-behaving robot respects the Robots Exclusion Protocol, also in its ex-
tended forms, by taking the robots.txt into account, and by using a reasonable
crawl delay to do not abuse network resources of the target domain. There
are several strategies to depict such a crawl delay. The dominant strategy
here is to simply use the delay given in the robots.txt, it is not used that
often, so one should have had a reason to write it in there. However there
are also more or less sophisticated strategies mentioned in literature.

The most popular indicator used in the field of web crawling is the PageR-
ank algorithm. Developed in the late 90’s by Page et. al, this method is used
to calculate the popularity and importance of a website. Websites are always
linked to each other, these links are also used by web crawlers to identify
further pages to crawl and navigate through the Web. The score of a page
depends recursively upon the scores of the pages linking to it. Whereas the
score itself depends on the number of links itself, and the number of different
linking websites [32, pp. 1]. The assumption now is, the more important a
page or domain is, the more often it changes, the more often it gets viewed,
the faster it should be crawled. PageRank is used primarily to order and pri-
oritise URL queues in crawling systems. The score defines the position of a
URL inside such a queue. This score is also important for many applications
performing incremental crawls, because it can give a hint about the change

4
http://www.bbc.co.uk/sitemaps/sitemap-uk-news-1.xml

rate of such pages [22, p. 490][31, pp. 187-188][36, pp. 27-28][27, p. 49][2,
pp. 895].

However the score calculated through PageRank can also used to assume
the network capacity of a domain. The more popular a page is, the more
request it will handle probably, because it has more users. This might not be
true in all cases, although it may be a valid assumption. Therefore a crawler
can use a smaller delay between requests the higher the score. For pages as
popular as google.com or amazon.com, a crawler might even use no delay,
because these domains deal with millions of users every day. The additional
traffic generated through a web crawler will not make a real difference here.
However to use PageRank as a method to depict crawling delays, a system
has to calculate the relevant scores beforehand, rendering it only a useful
strategy if the crawler is an incremental one, also improving its PageRank
scores with each crawling cycle.

Not only the popularity of a page might be relevant for its network ca-
pacities. Also the download rate, or bandwidth can be an indicator for the
overall capacity of a target domain. The download speed can easily be cal-
culated by dividing the size of downloaded page through the time needed.
Calculating transfer rates this way also includes network latency. So the rate
also depends on the current state of the network and the current traffic, both
influences latency. The download speed then can be used to classify domains
and to use suitable crawl delays for each group. Furthermore it improves
the speed of a crawler if fast loading sites are favoured and more frequently
requested than sites from slow domains, enhancing the output of a crawler.
A slightly different approach is it to take a crawl delay proportional times to
the last measured downloading time as done by Najork et. al[29, p. 9-11].
This ensures that a crawler only uses a defined fraction of the target’s server
resources. Overall we assume the measured download speed to be a valid
indicator for request handling capacity [31, pp. 187-188][15, pp. 292-293].

4.6 Caching

We expect that the implementation will be used by a higher number of inde-
pendent crawlers potentially targeting the same domains at the same time,
or at different points of time. Caching would improve politeness not only of
clients, but also of the system itself. Politeness should also include sending as
few requests as possible. If now two clients request the same page the second
one can be served from the cache. This also reduces the overall traffic and
hardware and network resources needed. The effectively of the cache itself

completely depends on the hit rate. If the domains crawled do not overlap,
then the cache will only serve a small number of requests or, in extreme cases,
can be rendered useless when there is some kind of crawler side coordination.

Although cache controlling is principally possible through HTTP header
fields it is questionable if a web crawling system should respect all directives
declared by RFC 7234. If a server response contains a Expires header field
specifying a date lying in the past, or a Cache-control field containing no-
cache and no-store, should a cache really discard such a response? Principally
this decision should be made on the web crawler or client side. The client
should decide how old a response is allowed to be until it is not accepted.
The accepted age of cached pages is depending on the use case. However
web crawling always just captures a snapshot of the part of the Web that is
crawled. The interesting question here is, if a cache should discard directives
disabling caching if two identical requests are received in a short time.

The decision whether a cached page is acceptable or not is the client’s one.
Therefore our solution should respect all standard Request Caching Direc-
tives, including no-cache. This will disable any caching efforts and may result
in less overall throughput. However, a client relying on real time responses
would otherwise not be served correctly. Regarding Response Caching Di-
rectives our cache will ignore the no-cache and no-store directives in favour
of better performance and more politeness. Instead a response containing
these directives will be considered fresh for 1 day, which we consider a good
trade-off between freshness and performance, because a client relying on real
time responses can use the no-cache directive.

4.7 A variety of use cases

Our solution should offer all these features described above. It should enable
caching and also respect the specified header fields and directives defined by
RFC 7234. Nonetheless the most important task is the enforcement of po-
liteness. So we have to respect the Robots Exclusion Protocol and eventual
domain specific politeness constraints. All these features must not only be
implemented for one specific use case, developed against interfaces defined
beforehand, but our solution has to handle a variety of use cases, significantly
different from each other.

Generally the potential use cases can be divided into three groups, mainly
based on the level of maturity in terms of web crawling, the user group and
relevant special requirements, which is also illustrated by Table 1. This

differentiation leads to the following groups:

• Simple and unsorted scripts

• Clients demanding sequential processing

• Clients demanding politeness services

4.7.1 Simple and unsorted scripts

The first group, simple or unsorted scripts, summarises all clients without
special requirements and low maturity. Such clients may be implemented
in almost every language and framework. Often they are just prototypes,
proof of concepts or temporary endeavours. Mostly the crawling component
itself is a loop structure, iterating over a set of URLs. However this sim-
ple implementations can cause the most critical problems, scaling with the
amount of clients running in parallel and uncoordinated or unsorted. They,
mostly unintended, consume server resources in an exhaustive way, because
politeness is barely implemented paired with a potentially high request rate.
In some cases it is even possible to send thousands of requests in a couple of
seconds. This can and will in most cases be interpreted as denial of service
attack and the crawler and it’s whole domain will be blocked. Most of the
domains out there have special Intrusion Detection Systems and also most
Firewalls will automatically block such clients.

Clients of this first group are often run by students or users not aware
of network and computing characteristics and which problems can arise if
certain constraints are not considered. However, it is not possible to ensure
that all clients inside a domain operate in a polite manner. Therefore po-
liteness must be enforced in a central way before requests are able to reach
its targets. This can be achieved by using a proxy. Requests are routed
through our proposed implementation of a proxy enforcing politeness check-
ing if a request violates eventual politeness restrictions. These restrictions
can origin from the Robots Exclusion Protocol, are configured manually or
calculated at runtime. If a request gets rejected, a special error code is re-
turned, depending on the reason. If it fails because there are currently to
many requests targeting the same domain the status code 429 Too Many
Requests is returned, including information when to try it again. 403 Forbid-
den is returned for every request violating constraints defined by the Robots
Exclusion Protocol. If the request passes all checks it will be forwarded to
the target and the retrieved content is sent back to the client.

4.7.2 Sequential processing

Some implementations of crawlers require sequential processing. These clients
issue a number of requests in parallel and expect to receive the responses in
that exact order. However the serving time of a request is inherently un-
predictable. The first request may take a few seconds to be served, while
the response for the last request sent is instantly available. Such a scenario
would lead to errors on the client side, which our implementation should
avoid. This adds an additional complexity to the internal scheduling of our
implementation, because it has to enforce a specific ordering of responses
belonging to the same client. Furthermore the connections between client
and server have to stay open a configurable amount of time. This timeout
may be configured whether at application startup or by including a dedicated
header field in the HTTP request.

One kind of clients belonging to this use case are scripts executed from
clients implemented with XQuery and XSPARQL. XQuery is a query lan-
guage applicable across many forms of XML structures [7]. Whereas XS-
PARQL is an extension of XQuery to query and format RDF (Resource
Description Framework, which allows to represent data independently of the
original language) structures [14, pp. 114-117][6, pp. 147-148]. These clients
are used to crawl archives for open data and the semantic web. They also
basically crawl by iterating over a list of URLs, but here it may be necessary
that the responses come back in the same order as the requests were issued.

4.7.3 Politeness services

The last use case our solution has to handle are mature, specialised crawlers
and crawling systems. These are already based on an internal client/server
like architecture. Whereby the client sends a set of seed URLs to the server, or
in some cases an internal queue. This queue internally manages the schedul-
ing of the crawling process. Dependent on the requested domains and the
requesting clients there are several processes active. Although, mimicking a
client/server architecture, both sides are currently implemented altogether
in one application. However this use case is the one coming closest to our
proposed implementation of a central service handling requests of clients dif-
fering in their needs and implementation.

The already existing crawlers and crawling systems should be enhanced
by politeness measures, executed on a client domain wide level. A proxy
would not suit the special requirements because the request handling and

Characteristic Unsorted Sequential Service

Maturity low middle high
Users average prof. prof.
Number of Clients high low low
Response Content Content URL
Politeness implemented - - maybe
Order of processing - required -
Batch - - yes

Table 1: Overview of the characteristics for each group of crawlers

crawling should be done on the client side. Our proposed solution for this
problem is to offer REST services for these clients to optionally check and
enforce politeness. REST (Representational state transfer) services allow
systems to communicate in a uniform, textual way over HTTP[19, pp. 76-
106]. Before crawling the extracted links a crawler will send every URL,
or a set of URLs to our implementation where each URL is checked if any
politeness constraints are violated. The URLs passing all checks and obeying
all rules will be sent back to the client. Additionally a client can request
additional information about why an URLs is denied for crawling and when
to crawl it. That allows for more efficient interaction between server and
client, which can take different measures according to the additional data
provided by the service.

5 Implementation

In this section we provide an architectural overview of our proposed solution
and implementation. We explain why we have chosen a specific set of frame-
works and libraries. The biggest and most complex parts of our solution
are the modules handling politeness and caching. Therefore we go into very
detail here. We also provide an overview of the work done to implement con-
figuration at runtime and monitoring of the system and the various caches
used. The complete source code can be found online on GitHub.5

5
https://github.com/PatrickRi/Zuul_proxy

5.1 Architecture

Our solution has to handle various web crawling use cases, and therefore
has to provide a number of endpoints and features. The implementation it-
self consists of various parts, each responsible for a specific task. Figure 2
provides an overview of the system’s architecture. We aimed for a modular
solution to make it easy to change single modules or include new ones. Fig-
ure 2 shows the three different use cases. Each one has different conversation
schemes with differing requests and responses. Whereas the group of queues
even has dedicated REST endpoints they talk to. The main system itself
can be divided into three parts. The proxy component serves the first two
use cases, unsorted scripts and clients requiring sequential processing. The
proxy checks if incoming requests obey the relevant politeness constraints
and returns the response of the destination. This is also the part utilising
caching. The second part, here called Services consists of the various end-
points to submit a set of URLs which get checked. A client can choose how
the URLs can be submitted, via request body or as query parameters.

Additionally there is a dedicated endpoint providing verbose output. Us-
ing it provides the requester with detailed information about why a URL
violates politeness constraints and when to crawl a URL if it got rejected.
The third part summarises the different REST and JMX (Java Management
Extensions) endpoints to monitor the components. Most of these endpoints
are provided out of the box by our chosen frameworks and libraries. Whereas
the Java Management Extensions provide a way to directly communicate
with dedicated Java objects, providing data and operations. These are us-
able through jconsole located in JDK_HOME/bin for instance, to visualise
the metrics of the heavily instrumented JVM and additional providers [24,
pp. 104-105].

Overall we are using four different caches, each serving a special purpose.
The most obvious use case for a cache is the caching of server responses.
Each successful response is cached in the Web Page Cache, together with all
HTTP headers and additional metadata. To do not lose any configuration
about crawling delays, whether they were configured manually, calculated or
read from the robots.txt, we save it in a persistent cache. This Configuration
Cache is loaded automatically at start, very much like a database. When
crawling a domain by requesting hundreds of sites it would be superfluous
to fetch the robots.txt every single time. Therefore every fetched robots.txt
is saved for 24 hours in a cache, and after that it gets refetched on demand.
The Politeness Cache does not primarily serves a storage purpose. We used

Figure 2: Architectural overview

the features of an Infinispan cache to determine if a request was issued to
the same domain inside a time frame smaller than the currently active crawl
delay for that domain.

5.2 Technology

For the implementation we have chosen Java as programming language, be-
cause of our years long experience with it. To build the needed services
and proxy functionality we have chosen Spring Boot.6 We decided against
similar frameworks and libraries like Apache Camel or Retrofit or standard
TCP sockets. Spring Boot gives us the possibility to easily create stand-alone
Spring based Applications. Spring itself is one of the biggest web frameworks
and one of the biggest frameworks in the Java world itself.

It is completely based around the idea of inversion of control and aspect
6
https://projects.spring.io/spring-boot/

oriented programming.7 Both makes it easier to decouple the single parts of
systems, leading to improved maintainability, expandability and flexibility.
IoC, also known as dependency injection, is a process whereby dependen-
cies like constructor arguments are not statically wrote inside the code, but
an object just defined these dependencies. If now another object wants to
use it, the Spring IoC container injects those dependencies when creating
the desired object. Spring is shipped with an optional embedded server like
Tomcat and Jetty, therefore a dedicated web server is not necessary, the
server is started by the application itself. Bootstrapping of new projects is
also much faster, due to the the various Maven ’starter’ POMs, declaring the
dependencies needed to work with the chosen Spring project. The starter
spring-boot-devtools for instance provides us with all dependencies needed to
automatically restart the server at classpath changes, live reload and remote
debugging. Spring provides a large range of modular projects, very much like
a construction kit. From security, over REST to monitoring, it is just needed
to add the respective starter project to get the dependencies to implement
the functionality.

Our proposed solution is based around the idea of a proxy and additional
web services. One popular proxy solution is Zuul originated at Netflix. 8

Usually it is used as a gateway service, routing REST requests, based on
different filters. The four filter types correspond to the lifecycle of a incom-
ing HTTP request. PRE filters are executed before the routing of requests,
ROUTING filters handle the routing itself. POST filters are executed after
the routing, whereas ERROR filters handle errors which occurred during the
process. Based on that, it is possible to implement a proxy using the idea
of filters, applying these on incoming requests and enforce politeness that
way. Netflix open sourced a number of their projects in the last years. Some
of these projects were completely included in a dedicated Spring Project,
Spring Cloud. This allows us to use the functionality of Zuul, together with
the features of the Spring framework without any extra effort. Furthermore
it is shipped together with a set of default filters for debugging, error han-
dling and simple routing.

Based on the idea of handling incoming requests with filters, we wrote
our own ROUTING filter, shown in Figure 3. It is responsible for caching,
enforcement of politeness and response handling. For each incoming request

7
https://docs.spring.io/spring/docs/current/spring-framework-reference/

html/beans.html

8
https://github.com/Netflix/zuul

the filter checks if the destination of a request is the proxy itself. If this is
the case a empty response is sent back to prevent endless loops because the
request would be forwarded to itself, without any breaking condition. The
next step is the check if the requested resource is already cached obeying
eventual Cache-Control directives, if these checks are passed then the cached
result is sent back with the headers of the original response. If a request can
not or should not be served from the cache, before forwarding the request to
its destination, it has to obey the constraints defined by the Robots Exclusion
Protocol. And as last step it is checked if the target domain has not been
crawled already in the respective crawl delay. The filter then forwards the
request to the destination and handles the server’s response. The fetched
page gets cached and various metrics get updated throughout the process.
At the end a dedicated filter provided by the Spring starter handles the
processing of the response and return it back to the client.

Figure 3: Zuul filter managing politeness, caching and monitoring

5.3 Caching

We heavily rely on caches in various parts of our proof of concept. To reduce
complexity and the effort needed we aimed at only using one cache imple-
mentation for all four caching use cases, as shown in Figure 2. Therefore we
had quite diverse requirements on the caching implementations we evaluated.
The requirements were as follows:

• Embeddable, without the need for a dedicated server

• Interoperatibility with Java or written in Java

• Persistable

• Distributable

• Automatic eviction and expiration

We aimed for a cache allowing both, to be run as dedicated server to share
data between several instances, effectively being distributable, and also to be
embedded to allow for fast prototyping. To keep the effort as small as pos-
sible the cache should be easily called and controlled by the Java code of
our solution. To prevent data loss at each system restart the data should
be persisted at shutdown or to prevent memory overflow. Furthermore the
cache should offer a possibility to automatically expire entries when an en-
try exceeds its lifetime and should provide various metrics and statistics for
monitoring. Looking at our requirements it was clear that database solutions
like SQL databases or NoSQL and document based solutions like Cassandra
or MongoDB do not suit our needs. This also holds true for Redis, which
cannot be run in an embedded manner, it needs dedicated infrastructure
to function properly. However there exist numerous other caching solutions
in the Java ecosystem. During research the most popular ones seemed to
be Ehcache9, Caffeine (former Guava)10, Infinispan11 and the vanilla Java
HashMap in various forms. We then evaluated this selection to get a best
option to use for our implementation.

After adding the required dependencies and libraries all four alternatives
are embeddable into a simple Java project without any need for a dedicated
server. Moreover all alternatives are written in Java and therefore fully inter-
operable with it. Ehcache and Infinispan provide cache persistence out of the

9
http://www.ehcache.org/

10
https://github.com/ben-manes/caffeine

11
http://infinispan.org/

Characteristic Ehcache Caffeine Infinispan HashMap

Embeddable yes yes yes yes
Java yes yes yes yes
Persistable yes manual yes no
Distributable yes no yes no
Eviction and Expiration manual manual yes no
Statistics yes yes yes no

Table 2: Overview of the characteristics for each group of crawlers

box by configuring the cache at creation time. This allows for overflow onto
the hard drive and for reload from the persistence store after shutdown with-
out losing data. HashMap does not provide such feature because data is hold
in memory and for Caffeine one would need to write an extension to write
entries into a file at eviction. Only Ehcache and Infinispan allow for easy
distribution without much effort needed. However Infinispan does not need
a dedicated server and can be operated fully distributed by using JGroups’
discovery protocols to automatically discover neighbouring instance. For run-
ning Ehcache in a cluster, dedicated infrastructure is needed. Eviction refers
to the process by which old or unused data can be dropped from the cache, or
in our case can be written to a persistent cache storage. The only alternative
fully offering eviction and entry based expiration if Infinispan. Ehcache and
Caffeine would both provide similar features. However expiration would need
to be implemented manually based on the data inside an entry. Infinispan
allows to put entries into the cache altogether with an expiration time out of
the box. To efficiently monitor and analyse the behaviour and performance
of our solution the provision of statistics and metrics is mandatory. Except
for HashMap, every alternative provides JMX beans and interfaces to fetch
statistics like hit ratio, size and consumed memory. These findings are sum-
marised in Table 2.

Based on our requirements and the assessment of four alternatives we
have chosen Infinispan. Not only is it the only option supporting all of our
requirements and we have previous experience using it. Distribution over
bigger clusters can be easily achieved and eviction and cache persistence is
also only a matter of a few lines of configuration. Statistics can be fetched via
JMX and through predefined interfaces. The latter can be used to implement
custom functionality or even extend the functionality of the monitoring of

Infinispan. Although benchmarks of the Caffeine developers 12 show that
Infinispan does not provide superior performance, we will use it for all our use
cases, because slightly better performance of other caches does not outweigh
the offered features.

5.4 Web caching

After checking that the destination of an incoming request does not match
the server’s address, our implementation checks if a cached response can be
returned. Caching improves the performance and reduces the workload for
network resources, because requests can be served directly from memory.
This also improves politeness, because each request not sent do not increase
the current crawl delay for the target domain. However to correctly handle
server responses and client requests our implementation has to respect the
directives defined in the Cache-Control, Content-Type and Expires header
fields. As already described above, these directives specify if a response is
allowed to be cached, how long a response is valid, and what the client ex-
pects to retrieve and if a cached response will be accepted.

Every fetched response with status 200 OK will be cached. To respect
the Content-Type directive each cache entry is uniquely identified by its URL
and the content type it contains. If now a client requests a URL without
specifying a content type it will receive a relevant cache entry without not
associated with a content type. If a request contains a header field declar-
ing a specific content type, it will only be served by the cache, if an entry
associated with that specific content type is available. To improve hit rates
we create various cache entries per response. One for the content type of the
response, one for */* and one without a content type. This is also considered
at cache retrieval (Listing 5). If a content type was specified in the request
only such a key will be looked up. Otherwise a cache lookup is done without a
content type and if that fails the wildcard pendant gets returned, if available.

1 String url = new URL(requestURL).toString ();
2 String header = request.getHeader(CONTENT_TYPE);
3 if (header == null || header.isEmpty ()) {
4 entry = cache.getEntry(new CacheKey(url));
5 // Check if entry obeys Cache -Control directives
6 if (! checkCacheControl(request , entry)) {

12
https://github.com/ben-manes/caffeine/wiki/Benchmarks

7 entry = cache.getEntry(new CacheKey(url ,
"*/*"));

8 }
9 } else {

10 entry = cache.getEntry(new CacheKey(url ,
header.replaceAll("\\s", "")));

11 }
12 // Check if entry obeys Cache -Control directives
13 if (checkCacheControl(request , entry)) {
14 return entry;
15 }

Listing 5: Logic for cache retrieval

Every retrieved entry has to be checked if it obeys eventual constraints
defined by the Cache-Control directives. Therefore we analyse the relevant
header fields and extract the data to use it at cache retrieval. If a client
request contains the no-cache directive the cache will be completely ignored.
A cached entry may also be considered as irrelevant depending on the values
of the max-age, max-stale or min-fresh directives, a request may contain. In
such a case our implementation calculates the age or the freshness of the
entry, dependent on the directive. However there are two ways to control the
lifespan of a response. Both Expires and max-age can be used to specify when
a page exceeds its lifespan and should not be considered at cache lookups
anymore. We have chosen a restrictive strategy here and will take the more
restrictive one if both are contained in the response to calculate age, staleness
and freshness. If the age exceeds the max-age or the entry was stale for too
long or the freshness time is less than requested the request cannot be served
from the cache.

5.5 Robots Exclusion Protocol

One part of politeness enforcement is the Robots Exclusion Protocol. Each
request which gets not served directly by the cache has to respect the Robots
Exclusion Protocol. The relevant robots.txt file is fetched by taking the host
part of the URL and appending /robots.txt. If there is no file, every path of
the domain is considered as allowed to be crawled. However if such a file can
be fetched then each line is parsed into a directive which is then used later
to check if a path is allowed to be accessed. Each robots.txt file is cached
for one day to improve performance and avoid unnecessary traffic. After this
timespan is has to be reloaded, to keep track of updates.

As Listing 3 shows, a file consists of several blocks, each starting with
a line defining the user agent name (User-agent). Our proof of concept is
named wu-is-crawler. Therefore our service just respects the block defining
this name or, if no such block exists, the block defining the wildcard name
*. Each block then consists of a set of lines starting with either Allow or
Disallow. A dedicated class extracts these lines and saves them for later
retrieval to check if the requested path is allowed as defined by the constraints
of the Robots Exclusion Protocol. This check is done by converting each
extracted path to a regular expression. For performance reasons the extracted
paths are ordered with the matching paths first followed by the most concrete
ones via length of the specified path. Now we iterate over all matching blocks,
and iterate again over the list of defined paths per block. This is done until
a matching path is defined in a Disallow line or there are no paths left. The
outcome is either true, which continues the process flow, or false, effectively
leading to the abortion of the process.

5.6 Crawl delay

Besides the Robots Exclusion Protocol our politeness enforcement measures
concentrate on crawl delays. Each domain is associated with a crawl delay
specified in milliseconds. During that configured timespan it is not allowed
to send requests targeting this domain. These delays are either specified by
the Robots Exclusion Protocol via a Crawl-delay line, are configured man-
ually or get calculated on the basis of various metrics. The delay can be
configured manually in various ways as described below in the corresponding
subsection. The configuration itself gets stored inside the dedicated, persist
Configuration Cache. This prevents data loss at server shutdown and allows
it to keep data for crawling delays over a longer timespan. Therefore it is pos-
sible to approximate delays also over several server restarts. The cache itself
stores data objects holding the current delay, the corresponding domain, the
manually configured delay and the delay specified in the robots.txt. We store
these information in separate fields to hold track of the initially configured
delay and eventual overrides of it.

To check if a request violates the crawl delay we use a handy feature
offered by Infinispan. Infinispan allows for putting entries in it, altogether
with an expiration time. In contrast to eviction, which means that unused
entries are moved to persistent storage to prevent memory overflow, expira-
tion means the removal of entries exceeding their lifetime, both from volatile
and persistent storage. Initially we sketched complex solutions to keep track
of outgoing requests and the relevant timestamps to control if a crawl delay

constraint gets violated at every new request. This would have required com-
plex data structures working with dedicated threads keeping track of storage
eviction. The calculation of time series, searching the last relevant entry and
calculating the difference to the current time in milliseconds, would also have
been very complex.

However the dynamic expiration of cache entries offered by Infinispan
allows for a simple yet effective solution. Instead of configuring a global
expiration time for the whole cache we are looking up the currently configured
delay for the destination domain and set it as expiration time for a new
entry in the Politeness Cache. A dedicated expiration manager, shipped with
Infinispan manages the removal of expiring entries in volatile and persistent
storage and cluster wide if running in distributed mode, using dedicated
threads. If now a request comes in we look up the target domain of the
request in the Politeness Cache. If an entry with that domain as key can
be found, we assume that the request would violate the constraints of the
crawl delay and respond with the status code 429 Too Many Request and a
Retry header mentioning the current delay for that domain, as defined by
RFC 6585 [30, p.3].

5.7 Services

Not all use cases require a proxy based solution to handle caching and polite-
ness. The third use case our implementation has to handle is the provision
of politeness information to already existing crawling systems. Each of these
systems may, or may not, be polite on its own. However if there is more than
one of such a system running inside the same domain, then politeness has
to be coordinated. To easily integrate politeness, these systems require an
interface to fetch respective politeness information for a set of URLs. Our
proposed solution offers three REST endpoints, each consuming and produc-
ing data in JSON format:

• POST /politeness

• GET /politeness?urls=[url1,url2, ...]

• POST /politeness/verbose

5.7.1 Filter services

The first two endpoints are identical, regarding their functionality. The only
difference is that the first one reacts on POST requests, expecting a body with

content type application/json. The second endpoint handles GET requests,
retrieving a set of URLs from a query parameter named urls as comma sep-
arated list. Both respond with a simple list in JSON format containing the
filtered previously submitted URLs, which are allowed to be crawled.

The more simple services are using the already implemented modules for
our proxy solution enforcing politeness, which is shown in the code excerpt
given in Listing 6. The algorithm iterates over the list of submitted URLs.
The services return the URLs allowed to be crawled at the time the client gets
the server response. Therefore we filter out every duplicate URL targeting a
domain which is the destination of a URL which has already passed all checks.
After this the URL has to obey all constraints as defined by the robots.txt and
is not allowed to violate any constraints regarding the crawl delay. However
it is possible that a request gets rejected by the proxy at actual crawling
time, because a request arrived shortly before activated a crawl delay. These
services just reflect the current situation regarding politeness constraints.

1 for (URL url : urls) {
2 if (! visitedDomains.contains(url)) {
3 if (robotsTxt.allows(url)) {
4 if (cache.isAllowed(url.getHost ())) {
5 visitedDomains.add(url.getHost ());
6 result.add(url);
7 }
8 }
9 }

10 }

Listing 6: Logic for checking URLs

5.7.2 Complex service

The POST /verbose endpoint offers a more detailed response. The list of
URLs is submitted via JSON body similar to the first endpoint. However
the response is not a simple list of strings or URLs, but an array of objects.
Such a response object holds information about the URL and a Boolean value
whether the URL can be crawled or not. If the URLs is not to be crawled
then such an object also contains a error message and, if it violates the crawl
delay but not the robots.txt, a retryAfter field specifying the milliseconds until
the URL can be crawled. This endpoint can be used either for debugging
purposes or human interaction, but also for more intelligent communication

between server and client. A client may submit a list of URLs and then crawl
the retrieved allowed URLs, omit the disallowed ones and start a delayed
trigger for all response objects holding a valid value in the retryAfter field.

1 [
2 "http :// derstandard.at/Lifestyle",
3 "http :// derstandard.at/Karriere",
4 "http :// derstandard.at/suche /12312",
5]

Listing 7: Example payload for calling complex service

If now a client submits a list of URLs like the one from Listing 7, to
crawl the website of a popular Austrian newspaper, the service iterates over
the list and checks every URL. A possible response would have a structure
similar to the one illustrated by Listing 8. The first URL is allowed to
be crawled which results in allowed being true. The destination of the
second URL requested is equal to the one of the first URL. Therefore the
attribute allowed is set to false. Furthermore the retryAfter field is set
to the currently configured crawl delay of the domain and a respective error
message is stored in the error field. The path of the third and last URL is
disallowed by the Robots Exclusion Protocol which results into a dedicated
error message and retryAfter to -1, which is the default value to signal the
client that for a specific URL a delay does not have to be considered.

1 [{
2 "url":"http :// derstandard.at/Lifestyle",
3 "error":null ,
4 "allowed":true ,
5 "retryAfter":-1
6 },{
7 "url":"http :// derstandard.at/Karriere",
8 "error":"There must be a delay of 1000

milliseconds between each request.",
9 "allowed":false ,

10 "retryAfter":1000
11 },{
12 "url":"http :// derstandard.at/suche /12312",
13 "error":"Blocked because URL is excluded from

allowed URLs.",
14 "allowed":false ,
15 "retryAfter":-1
16 }]

Listing 8: Example response of complex service

5.8 Configuration

SpringBoot allows for quite extensive configuration. It is possible to con-
figure server ports, configuration sources, security settings and myriads of
other things. Almost every Spring project has its own set of configuration
parameters which can completely change the behaviour of the reconfigured
system. The configuration itself can be done by various ways. However it is
possible to overwrite configured values due to the way SpringBoot considers
configuration properties, which is done in the following order: 13

1. Updates via Spring Actuator

2. Command line arguments

3. Java System properties

4. OS environment variables

5. Application properties outside of packaged jar (application.yml)

6. Application properties inside of packaged jar (application.yml)

Besides the obligatory configuration of server port and logging levels we
did some additional necessary configuration. Zuul per default works with
a set routes, forwarding every incoming request to the target of the route
(e.g. /service/external to /service/internal/default). To achieve a proxy like
behaviour with Zuul we had to configure routes solely consisting of wildcards
to match all incoming requests (/, /*, /**). However this lead to the prob-
lem that the set of custom service endpoints and the endpoints of Actuator
got intercepted too. Therefore we had to either exclude it for the service
endpoints or move the endpoints to a different port like the ones of Spring
Actuator. Additionally we externalised the configuration for the different
caches, making it possible to configure the memory size, thread count and
the name of the JMX domain, all backed by reasonable defaults.

Configuration of the crawl delays is done according to the already de-
scribed ways. Whereas the application.yml entries have the format shown in

13
https://docs.spring.io/spring-boot/docs/current/reference/html/

boot-features-external-config.html

Listing 9. Basically it is a list of entries consisting of a domain field and a
delay field controlling the crawl delay for the domain in milliseconds. It is
also possible to configure a default domain, which provides a default crawl
delay for all domains which are not explicitly configured.

Two of the use cases for our implementation are contradicting. It is
not possible to provide a proxy intercepting requests and at the same time
support the use case demanding a fixed order of responses with a timeout.
Therefore a configuration parameter crawler.politeness.timeout determines
the behaviour of the started instance of our implementation. If the timeout
is set, then the proxy functionality is turned off and the configured value is
used as timeout for halted responses to serve the respective use case and vice
versa.

1 politeness:
2 domains:
3 - domain: derstandard.at
4 delay: 1000
5 - domain: orf.at
6 delay: 5000
7 default -domain:
8 domain: default
9 delay: 1500

Listing 9: Configuration of crawl delays for domains and the default value

5.9 Configuration at runtime

To now enable configuration at runtime we use Spring Actuator14. Which
is a Spring project offering a number of additional features for monitoring
and managing Spring applications. We use it for monitoring purposes as
described below and for managing the configuration of our project at run-
time. For this purpose we are using two of the many endpoints coming with
Actuator. We use the endpoint POST /env to change configuration on the
fly via REST. This is done through declaring a set of key value pairs in the
request body. Spring recognises these properties, but only updates it when it
receives a request at POST /refresh. The update is then achieved by creating
a snapshot of the current system wide configuration. This snapshot is then
compared to the new state and the changes then are published and set into

14
https://github.com/spring-projects/spring-boot/tree/master/

spring-boot-actuator

the according properties.

As the overview of configuration sources above indicates, there are various
more ways to do configuration for our solution. However they all have some
restrictions. Command line arguments and Java System properties can only
be changed at start up of the server, respectively the Java Virtual Machine
(JVM). OS environment variables can be updated at any time, however this is
quite inconvenient to do. The most concise way is it to use the application.yml
file and to do all configuration in one file. Although Spring does not offer
a concise way to react on updates done in files at runtime we more or less
copied the functionality of Spring Actuator and expand it to work with our
configuration for crawl delays. If now the application.yml file gets updated
Spring registers a change and our solution itself updates its configuration
after calling Actuator’s /refresh endpoint.

5.10 Monitoring

Monitoring is absolutely essential to efficiently run an application. Whereas
monitoring can be described as the observation and checking of the per-
formance and availability of an information system. Every system should
provide possibilities to view health and performance indicators. Without, it
is not possible to identify errors or slow performance leading to poor qual-
ity of service. Therefore our implementation offers various ways to monitor
the performance and availability of the system even down to the level of
single components and allows responsible users to reason about the current
behaviour of the system. For this reason our solution offers a number of
endpoints:15

• GET /env - Exposes all configuration properties.

• GET /health - Shows information about status and disk space.

• GET /metrics - Provides an overview over a greater number of metrics.

• GET /trace - Displays trace information.

• GET /delays - Returns a list of maximum 2000 configured crawl delays.

Although the endpoints shipped with Actuator provide very rich infor-
mation about application health and offer a message trace, we defined an

15
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/

#production-ready-endpoints

additional endpoint GET /delays to expose currently configured crawl de-
lays for monitoring purposes. However the respective cache can become quite
big, leading to potential errors if one fetches all entries of it. Therefore the
endpoint constraints the maximum result set to 2000, if the cache grows big-
ger than this threshold it returns an empty list.

Our implementation heavily utilises caches. As a result the performance
and availability of these caches is critical for the system, making the monitor-
ing of these caches essential. Infinispan directly provisions a large number of
statistics and health indicators over JMX (Java Management Extensions).16

Each running cache instance of a Java Virtual Machine provides its own
statistics over dedicated JMX endpoints. Each Infinispan cache we are using
owns a dedicated JMX domain. Under these domains Infinispan automati-
cally provides statistics about memory consumption, hit ratios, misses, size
and a number of other metrics. In addition JMX endpoints do not only ex-
pose information, but also operations on the underlying component. In the
case of Infinispan it is possible to clear, shutdown or restart a single cache
through the respective buttons.

However we found the provision of all these metrics through JMX end-
points not sufficient. It is cumbersome to collect these metrics by hand
or to interact with JMX trough a programmatic way. Therefore we de-
cided to extend the GET /metrics endpoint of Spring Actuator to dis-
play the relevant metrics hits, size, misses, retrievals, hit ratio and memory
consumption. These metrics have the format cache.[cache-name].[metric].
cache.page-cache.size for instance, displays the current number of en-
tries in the cache responsible for storing responses.

6 Evaluation

We evaluate the performance and functionality of our proof of concept in
various ways. Of course one component was manual testing during develop-
ment and implementation. As it is part of every development process to try
out the implemented things, see if it works, fix errors and try it again. We
also already assessed the functionality of the REST services, an excerpt of it
can be seen in Listing 8. To check if the controlling of the domain specific
crawling delay works correctly we implemented a small Java program. This
program sends a request every 200ms to a fixed URL. For every request it

16
http://infinispan.org/docs/stable/user_guide/user_guide.html#jmx:

chapter

prints if the request succeeded or not. The result of this experiment is il-
lustrated in Figure 4. Because the domain was configured with a delay of
1000ms, only every fifth request succeeds. The time window is big enough
to let four and not five requests fail, because our concept measures the delay
starting when a request is forwarded to its destination. Therefore one has to
subtract the latency after that and the latency between the issue of a request
till it arrives at the according check at the proxy.

Figure 4: The effect of a delay on the crawling process

Although the correct functioning of our proposed solution is important,
the performance of our implementation is equally important. A solution with
performance significantly worse than sending request without a proxy in be-
tween would be rendered useless. Obviously it is not possible to implement a
proxy based solution without increasing latency. However the increase must
not affect the performance of clients in a critical way.

To evaluate this aspect of our solution we set up a second experiment.
We defined a set of 20 URLs, all having the same target domain. Our test
setup starts two clients at the same time with the same set of 20 URLs. Each
client iterates over this set and issues a request for that URL, waits for the
response and protocols the outcome and time needed. This is done for every
URL in the set, with both clients running in separate threads and without
sharing any resources. The only difference is, one client uses our proposed
solution as proxy in between and the other client does not.

We executed this setup five times overall, after a warm up phase to avoid
biased results from initialising code segments and components. Each request
is sent with Cache-Control: no-cache in the header to disable any caching

mechanisms. The resulting time series are illustrated by Figure 5. Each
running cycle of a client is displayed as a line, showing the response time for
each of the set of URLs. There are some outliers, identifiable by the response
times significantly above average. The effect of outliers gets reduced by the
increase of the set of data, here 100 data points per client. We assume that
unpredictable network latency and varying bandwidth lead to this effects.

Figure 5: Request time on the y-axis per client, run cycle and URL on the
x-axis

Solely based on Figure 5, one cannot predict the differences between two
clients, and thus the difference our proxy makes. Therefore we aggregated the
results using the average for all 5 data series per client to get more distinct
results. As Figure 6 shows, the difference between the client working without
a proxy and the client working with our proxy, is not significant. The overall

average for all data points per client makes this way more clearer. We mea-
sured an average response time of 592,69ms for the client without a proxy.
Our proxy based solution added a latency of nearly 10ms or 1.5%, resulting
in an average response time of 601,76ms for the client using our solution.

Figure 6: Average request time on the y-axis per client and URL on the
x-axis

7 Conclusion and further research

The objective of this thesis is it to provide a solution for enforcing politeness
for a variety of different use cases. Besides politeness our implementation
should also provide caching and allow for extensive configuration and mon-
itoring. We divided the use cases into three groups, each having different
characteristics. These groups are simple or unsorted scripts, clients relying
on sequential processing and clients requiring services to check politeness be-
fore crawling a URL. For our solution to function accordingly we divided it
into two parts. A part implemented as proxy, working in between the client
and its destination. The second part addresses the third use case, with clients
having scheduling and crawling mechanisms. For these clients our solution
offers a set of REST endpoints to check if the submitted URLs violate any

politeness constraints.

We built our solution based on SpringBoot and a number of additional
Spring projects for implementing monitoring, security and web services. Both
parts, proxy and services, are using the same implemented components in
background, which can further be broken down into more detail. One com-
ponent handles the caching of retrieved web objects to improve performance
and politeness. Another component handles the fetching of robots.txt files,
the extractions of directives and the validation of a given URL. An additional
component uses Infinispan, which is also used for caching and storing con-
figuration properties, and its special ability to declare individual expiration
times to handle crawl delays and ensures politeness that way.

Besides offering additional features like monitoring of all system compo-
nents and configuration at runtime we showed that our solution is functioning
properly. It automatically fetches robots.txt files, caches responses while re-
specting various Cache-Control directives, and aborts requests if they would
violate crawling delay constraints. We also showed that the added latency
of our solution is a negligible factor. Our experiment showed a increase in
latency of 1,5%. We assume that to be a valuable trade off for the automatic
handling of politeness and features like monitoring an caching.

Our proof of concept is far from complete tough. There are still a few
open issues and some research has to be done. Currently our solution is
prepared to run in a distributed manner and would be able to form a clus-
ter. However according experiments has not been done yet, and considering
that distribution always adds an additional layer of complexity and has the
potential to raise problems.

The robots.txt file is not the only source for crawling directives. However
at this state of our work, the proxy is not able to analyse the data fetched to
extract eventual <meta> tags in the HTML code, containing directives of the
Robots Exclusion Protocol. Our implementation also does not consider any
sitemap directives. A service automatically fetching sitemaps of the destina-
tion domain, if existing, would be a valuable extension of our implementation.

Furthermore our solution currently only handles HTTP requests. Build-
ing a HTTPS proxy requires different methods, to handle tunnelling and
various other security measures to prevent man in the middle attacks, ex-
actly addressing what a proxy would do in our scenario.

Our future work will also concentrate on more advanced strategies for
the estimation of crawl delays. Currently delays are configured manually or
are determined by the Robots Exclusion Protocol. There are approaches for
using algorithms like PageRank to calculate delays on the basis of domain
popularity. Another approach would be the polling of delays by continuously
decreasing the delay until the used IP address gets blocked by the destination
host.

References

[1] Ricardo Baeza-yates and Carlos Castillo. Balancing Volume, Quality
and Freshness in Web Crawling. In In Soft Computing Systems - Design,
Management and Applications, pages 565–572. IOS Press, 2002.

[2] Ricardo Baeza-Yates, Carlos Castillo, Mauricio Marin, and Andrea Ro-
driguez. Crawling a Country: Better Strategies Than Breadth-first for
Web Page Ordering. In Special Interest Tracks and Posters of the 14th
International Conference on World Wide Web, WWW ’05, pages 864–
872, New York, NY, USA, 2005. ACM.

[3] J.D. Belfiore, I.M. Ellison-Taylor, S. Ramasubramanian, C.H. Chew,
and S.E. Berkun. Method for downloading a sitemap from a server
computer to a client computer in a web environment, February 2003.

[4] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform re-
source identifier (uri): Generic syntax. STD 66, RFC Editor, January
2005. http://www.rfc-editor.org/rfc/rfc3986.txt.

[5] Tim Berners-Lee, Larry Masinter, and Mark McCahill. Uniform resource
locators (url). RFC 1738, RFC Editor, December 1994. http://www.
rfc-editor.org/rfc/rfc1738.txt.

[6] Stefan Bischof, Stefan Decker, Thomas Krennwallner, Nuno Lopes, and
Axel Polleres. Mapping between RDF and XML with XSPARQL. Jour-
nal on Data Semantics, 1(3):147–185, September 2012.

[7] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu,
Jonathan Robie, and Jerome Simeon. XQuery 1.0: An XML Query
Language (Second Edition; Revised 7 September 2015), September 2015.

[8] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna.
UbiCrawler: A Scalable Fully Distributed Web Crawler. Softw. Pract.
Exper., 34(8):711–726, July 2004.

[9] Brian E. Brewington and George Cybenko. How Dynamic is the
Web? In Proceedings of the 9th International World Wide Web Confer-
ence on Computer Networks : The International Journal of Computer
and Telecommunications Netowrking, pages 257–276, Amsterdam, The
Netherlands, The Netherlands, 2000. North-Holland Publishing Co.

[10] Carlos Castillo, Mauricio Marin, Andrea Rodriguez, and Ricardo Baeza-
Yates. Scheduling Algorithms for Web Crawling. In Proceedings of
the WebMedia & LA-Web 2004 Joint Conference 10th Brazilian Sympo-
sium on Multimedia and the Web 2Nd Latin American Web Congress,
LA-WEBMEDIA ’04, pages 10–17, Washington, DC, USA, 2004. IEEE
Computer Society.

[11] Junghoo Cho and Hector Garcia-Molina. The Evolution of the Web
and Implications for an Incremental Crawler. In Proceedings of the 26th
International Conference on Very Large Data Bases, VLDB ’00, pages
200–209, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers
Inc.

[12] Richard Cyganiak, Holger Stenzhorn, Renaud Delbru, Stefan Decker,
and Giovanni Tummarello. Semantic Sitemaps: Efficient and Flexi-
ble Access to Datasets on the Semantic Web. In The Semantic Web:
Research and Applications, Lecture Notes in Computer Science, pages
690–704. Springer, Berlin, Heidelberg, June 2008.

[13] Brian D. Davison. A Survey of Proxy Cache Evaluation Techniques.
ResearchGate, 24, February 2001.

[14] Daniele Dell’Aglio, Axel Polleres, Nuno Lopes, and Stefan Bischof.
Querying the Web of Data with XSPARQL 1.1. In Proceedings of the
2014 International Conference on Developers - Volume 1268, ISWC-
DEV’14, pages 113–118, Aachen, Germany, Germany, 2014. CEUR-
WS.org.

[15] Michelangelo Diligenti, Marco Maggini, Filippo Maria Pucci, and Franco
Scarselli. Design of a Crawler with Bounded Bandwidth. In Proceed-
ings of the 13th International World Wide Web Conference on Alternate
Track Papers & Posters, WWW Alt. ’04, pages 292–293, New York, NY,
USA, 2004. ACM.

[16] Stephen Dill, Ravi Kumar, Kevin S. Mccurley, Sridhar Rajagopalan,
D. Sivakumar, and Andrew Tomkins. Self-similarity in the Web. ACM
Trans. Internet Technol., 2(3):205–223, August 2002.

[17] R. Fielding, M. Nottingham, and J. Reschke. Hypertext transfer
protocol (http/1.1): Caching. RFC 7234, RFC Editor, June 2014.
http://www.rfc-editor.org/rfc/rfc7234.txt.

[18] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk
Nielsen, Larry Masinter, Paul J. Leach, and Tim Berners-Lee. Hyper-
text transfer protocol – http/1.1. RFC 2616, RFC Editor, June 1999.
http://www.rfc-editor.org/rfc/rfc2616.txt.

[19] Roy Thomas Fielding. Architectural styles and the design of network-
based software architectures. PhD thesis, University of California, Irvine,
2000.

[20] Roy Friedman. Caching Web Services in Mobile Ad-hoc Networks: Op-
portunities and Challenges. In Proceedings of the Second ACM Interna-
tional Workshop on Principles of Mobile Computing, POMC ’02, pages
90–96, New York, NY, USA, 2002. ACM.

[21] Google. Using the robots meta tag, May 2007. Accessed: July 25, 2017.

[22] Prashant and Raghuwanshi Janbandhu, Rashmi and Dahiwale. Analysis
of web crawling algorithms (PDF Download Available). In ResearchGate,
volume 2, pages 488–492, 2014.

[23] M. Koster. A Method for Web Robots Control, November 1996. Ac-
cessed: May 25, 2017.

[24] H. Kreger. Java Management Extensions for application management.
IBM Systems Journal, 40(1):104–129, 2001.

[25] Hsin-Tsang Lee, Derek Leonard, Xiaoming Wang, and Dmitri Loguinov.
IRLbot: Scaling to 6 Billion Pages and Beyond. ACM Trans. Web,
3(3):8:1–8:34, July 2009.

[26] Mark Levene and Alexandra Poulovassilis. Web Dynamics: Adapting to
Change in Content, Size, Topology and Use. Springer Science & Business
Media, March 2013. Google-Books-ID: WkmqCAAAQBAJ.

[27] Mauricio Marin, Rodrigo Paredes, and Carolina Bonacic. High-
performance Priority Queues for Parallel Crawlers. In Proceedings of
the 10th ACM Workshop on Web Information and Data Management,
WIDM ’08, pages 47–54, New York, NY, USA, 2008. ACM.

[28] Marc Najork. Web Crawler Architecture. In LING LIU and M. TAMER
ÖZSU, editors, Encyclopedia of Database Systems, pages 3462–3465.
Springer US, 2009. DOI: 10.1007/978-0-387-39940-9_457.

[29] Marc Najork and Allan Heydon. Handbook of Massive Data Sets. pages
25–45. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[30] M. Nottingham and R. Fielding. Additional http status codes. RFC
6585, RFC Editor, April 2012.

[31] Christopher Olston and Marc Najork. Web Crawling. Foundations and
Trends R� in Information Retrieval, 4(3):175–246, February 2010.

[32] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank Citation Ranking: Bringing Order to the Web., November
1999.

[33] Patrick Oliver Riemer. Model based Cache. Unpublished, March 2017.

[34] robotstxt.org. The Web Robots Pages, July 2017. Accessed: July 24,
2017.

[35] Uri Schonfeld and Narayanan Shivakumar. Sitemaps: Above and Be-
yond the Crawl of Duty. In Proceedings of the 18th International Con-
ference on World Wide Web, WWW ’09, pages 991–1000, New York,
NY, USA, 2009. ACM.

[36] Sandeep Sharma and Ravinder (Guide) Kumar. Web-Crawling Ap-
proaches in Search Engines. Thesis, September 2008.

[37] Vladislav Shkapenyuk and Torsten Suel. Design and Implementation
of a High-Performance Distributed Web Crawler. In Proceedings of the
18th International Conference on Data Engineering, ICDE ’02, pages
357–, Washington, DC, USA, 2002. IEEE Computer Society.

[38] Danny Sullivan. Meta Robots Tag 101: Blocking Spiders, Cached Pages
& More, March 2007. Accessed: July 25, 2017.

[39] Yang Sun, Ziming Zhuang, and C. Lee Giles. A Large-scale Study of
Robots.Txt. In Proceedings of the 16th International Conference on
World Wide Web, WWW ’07, pages 1123–1124, New York, NY, USA,
2007. ACM.

[40] Mike Thelwall and David Stuart. Web crawling ethics revisited: Cost,
privacy, and denial of service. Journal of the American Society for In-
formation Science and Technology, 57(13):1771–1779, November 2006.

[41] Jürgen Umbrich, Nina Mrzelj, and Axel Polleres. Towards capturing
and preserving changes on the web of data. pages 50–65, 2015.

[42] Jia Wang. A Survey of Web Caching Schemes for the Internet. SIG-
COMM Comput. Commun. Rev., 29(5):36–46, October 1999.

