
Master Thesis

Evaluation of Search Engines in the
Context of RIS
Stefan Bauer, 0852385

Wirtschaftsuniversität Wien (WU), Welthandelsplatz 1, 1020 Vienna, Austria

Subject Area: Information Business

Supervisor: Prof. Dr. Axel Polleres, Dr. Jürgen Umbrich

Date of Submission: March 2016

Department of Information Systems and Operations, Vienna University of
Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

To my parents

Acknowledgements

I would like to thank the people how supported me during my studies and
helped me in writing this thesis:

I would like to express my particular thanks to my family, who always sup-
ported me during my studies. Moreover, I would like to thank my supervisors
Prof. Dr. Axel Polleres and Dr. Jürgen Umbrich, who guided me through
the thesis and always contributed valuable input. Also, I would like to ex-
press my gratitude towards the Federal Chancellery of Austria, in particular
Mag. Brigitte Barotanyi, who made this thesis possible. Finally, I would like
to thank my friends, in particular Andreas Curik, who always gave advice in
many situations during my studies.

Abstract

The Austrian Legal Information System (RIS) is a web based platform that
grants access to national law, the law of the European Union, and the deci-
sions of multiple courts. RIS currently uses a search system that is optimized
for storing and retrieving information in a structured form. However, the le-
gal RIS documents are mainly composed of unstructured information (text).
Thus, many custom implementations were developed in order to provide the
users a variety of di�erent search functionalities. In the �rst part of the
present thesis, we investigate the limits of the current search systems and
evaluates alternative solutions. Since RIS was originally developed for pro-
fessional users e.g. lawyers, judges, we discuss further concepts to improve
the overall search experience in the second part of the thesis.

Contents

List of Figures vi

List of Tables vii

Abbreviations viii

1 Introduction 1
1.1 Motivation . 1
1.2 Structure . 2

2 Preliminaries 3
2.1 Index . 6
2.2 Search Queries . 13
2.3 Ranking . 18
2.4 Evaluation Methods . 21
2.5 Additional Methods and Techniques 23
2.6 Implementations . 25

3 RIS - The Austrian Legal Information System 27
3.1 Access and Design . 27
3.2 Architecture . 29
3.3 Data and Search . 31
3.4 Requirements . 37

4 Evaluation of Search Engines 40
4.1 Selection of Search Engine . 40

4.1.1 Lucene - Open-Source Search Engine 41
4.1.2 Mindbreeze - Commercial Search Engine 41

4.2 Technical Characteristics . 43
4.2.1 Lucene . 43
4.2.2 Mindbreeze . 48

4.3 Implementation of Requirements 49
4.4 Evaluation . 72

5 Accessibility and Enrichment of Search 77
5.1 Integration of External Sources 77
5.2 Further Solutions . 81

6 Conclusion 86

iv

CONTENTS v

A Preliminaries Content 91
A.1 Hash Function . 91

B Lucene Content 92
B.1 Indexer . 92
B.2 Searcher . 92
B.3 Database Connection and Indexing 93
B.4 Range Query . 95
B.5 Update . 96
B.6 Auto Corrections . 96
B.7 Faceting . 97
B.8 Synonyms . 98
B.9 Segmentation . 99
B.10 Canonisation . 100
B.11 Custom Analyzer . 101
B.12 Entity Extraction . 101

C Mindbreeze Content 103
C.1 Query Expansion . 103

D RIS Content 107
D.1 Database Bundesnormen . 107
D.2 Queries . 108

List of Figures

1 Core Architecture of a Search Engine 6
2 Sort-based Dictionary . 10
3 Hash-based Dictionary . 13
4 Faceted Search . 18
5 Screenshot of the Austrian Legal Information System 28
6 Web-site visits and user queries 29
7 Screenshot of the Consolidated Federal Law search mask . . . 30
8 RIS Architecture . 31
9 RIS Import . 32
10 SQL Server Full-text Architecture (based on [27]) 33
11 Magic Quadrant on Enterprise Search (based on [16]) 43
12 Lucene Architecture . 45
13 Lucene Document . 46
14 Mindbreeze Architecture . 49
15 ETL Talend Job . 52
16 Mindbreeze Web Interface . 54
17 Indexing Times . 65
18 Integration of External Sources 78
19 User Interface . 82

vi

List of Tables

1 Stemming Substitutions . 9
2 Dictionary . 11
3 Posting List . 14
4 Levenshtein distance . 17
5 Vector Space . 21
6 RIS Tabs . 27
7 RIS Statistics . 29
8 Microsoft SQL-Server FTS Features 34
9 Requirements . 39
10 Lucene Document . 47
11 Implemented Requirements . 51
12 Lucene Hardware Details . 52
13 Mindbreeze Mapping . 53
14 Support of RIS Requirements 72
15 Index Size . 73
16 Query Times . 74
17 RIS URL . 75
18 Result Overlap . 76
19 In-Links . 79
20 Direct In-link . 80
21 Second Search in HELP . 81
22 Database Bundesnormen . 107
23 RIS Queries . 108

vii

Abbreviations

API Application Programming Interface
BLOB Binary Large Object
CSV Comma-Separated Values
CRC Cyclic Redundancy Check
ETL Extract Transform Load
FTS Full-Text Search
HTML Hypertext Markup Language
IDE Integrated Development Environment
IE Information Extraction
IR Information Retrieval
JDBC Java Database Connectivity
NER Named Entity Recognition
NLP Natural Language Processing
RDMS Relational Database Management System
RIS Austrian Legal Information System
SDK Software Development Kit
SQL Structured Query Language
TFIDF Term Frequency Inverse Document Frequency
SVM Support Vector Machine
URL Uniform Resource Locator
XML Extensible Markup Language

viii

1 Introduction

The retrieval of information and knowledge from documents and the struc-
tured data has always been an important topic. However, with invention
of the computer in the last century, the amount of information signi�cantly
increased every year. Relational databases, which are optimised for struc-
tured data, are still the most important systems to store and retrieve in-
formation. Due to the increasing amount of unstructured information, new
full-text search systems were developed dealing with textual content in an
e�ective way. Those full-text search systems cover a variety of uses cases e.g.
web search, enterprise search, and range from commercial to open-source so-
lutions. Also, relational database vendors started to recognize their limits
when dealing with large amounts of unstructured information and started to
integrate full-text search functionalities in their solutions.

In this thesis, we investigate full-text search from the viewpoint of a partic-
ular use case around storing and searching legal texts. The Austrian Legal
Information Systems (RIS), which is hosted by the Federal Chancellery of
Austria, is an information system that provides those legal texts through a
web interface. The legal content primarily covers the Austrian law and is
accessed by professionals e.g. lawyers, judges, as well as non-professionals.
RIS uses a relational database to store and retrieve the legal content. How-
ever, the current system has some issues. On the one hand, it has plenty
of customized implementations that were developed to provide additional
full-text search features. Those implementations have evolved historically
and are di�cult to maintain. On the other hand, the current search sys-
tems lacks various full-text search features that are well known from other
Web-sites e.g. automatically suggesting alternatives in terms of misspelled
words, re�ning the search through categories. Finally, RIS is a platform that
is accessible to everyone. However, retrieving the desired content within a
reasonable amount of time is sometimes challenging for non-professionals.

1.1 Motivation

The objective of the present thesis is to �nd solutions, which allow to mitigate
the limitations of the current RIS search system. To this end, we evaluate
alternative search systems and compare them to the current solution. More-
over, we discuss various concepts in order to improve the user experience by
enriching the search with external information.

1

Introduction 2

1.2 Structure

In chapter 2, we describe the basic full-text search features and evaluation
methods as well as the most important features of full-text search systems.
Moreover, we discuss methods and techniques, which can be applied to ex-
tract additional information from textual content.

In chapter 3, we describe the current RIS search system from di�erent view-
points. Therefore, we address the access statistics and the technical archi-
tecture, as well as the basic full-text search features of current system.

In chapter 4 we evaluate and compare alternative search systems. Therefore,
the Federal Chancellery of Austria provided us with a set of requirements
that a new search system must meet. Those requirements range from stan-
dard full-text search features e.g. wildcard search, boolean search, to RIS
speci�c features e.g. segmentation of speci�c parts in legal documents. First,
we select the alternative search systems and describe the respective technical
characteristics. Next, we consider the implementation of the requirements
in respective solution and compare them to the current RIS search system.
Finally, we evaluate the search systems based on several methods and tech-
niques.

In chapter 5, we describe di�erent possibilities for improving the overall
search experience. We discuss concepts, which range from the integration
of external sources to the extraction of information from RIS documents.

2 Preliminaries

This chapter describes the basic concepts of Information Retrieval (IR). We
explain the concepts of IR based on the following example documents, which
we randomly selected from the RIS platform.

Document D1:

Das Verfahren über die Bestellung eines Sachwalters ist in jeder Lage
einzustellen, wenn das Gericht zu dem Ergebnis gelangt, dass ein Sach-
walter nicht zu bestellen ist. Dabei besteht zum einen keine Verp�ich-
tung des Gerichts, einen bestimmten Verfahrensabschnitt abzuwarten,
zum anderen hat auch noch der Oberste Gerichtshof eine Einstellung
auszusprechen, wenn er mit der erforderlichen Sicherheit zu dem Ergeb-
nis gelangt, dass die Voraussetzungen für eine Sachwalterbestellung nicht
vorliegen.

Document D2:

Der gemäÿ �20 RL-BA 1977 von einem Rechtsanwalt im Falle eines per-
sönlichen Streites aus der Berufsausübung mit einem anderen Rechtsan-
walt um Vermittlung anzurufende Ausschuss der Rechtsanwaltskammer
ist kein Schiedsgericht im Sinne des �587 ZPO.

Document D3:

Die gemäÿ �28 RAO dem Ausschuss der Rechtsanwaltskammer obliegende
Aufgabe, bei Meinungsverschiedenheiten zwischen Kammermitgliedern
im Rahmen ihrer Berufsausübung zu vermitteln, stellt im Zusammenhalt
mit �37 RAO die Grundlage dar, dass der Österreichische Rechtsanwalt-
skammertag Richtlinien zur Ausübung des Rechtsanwaltsberufes erlassen
darf. Bei diesen RL-BA 1977 handelt es sich um Verordnungen.

3

Preliminaries 4

Information Retrieval (IR) describes the �eld of retrieving information
from di�erent kind of sources. These sources can be music �les, pictures,
texts. However, in the academic area IR refers often to the sub domain text
retrieval, which deals with the retrieval of information from textual content.
Therefore, we de�ne the term IR as follows.

�Information retrieval (IR) is �nding material (usually documents) of an
unstructured nature (usually text) that satis�es an information need from
within large collections (usually stored on computers) [25].�

Writing and storing information has a long tradition and goes back to around
3000 BC, when the Sumerian population designed clay tablets with some in-
scriptions. The Sumerians �gured out that e�cient use of information is
very crucial. To accomplish that goal, they developed some classi�cation
techniques in order to identify every tablet and the content it contains. This
system allowed them to create information, store it centrally, and retrieve it
with the help of intermediaries [32].

This was just a short journey to the past, but re�ects very well that the
need of storing and retrieving information is very important and dates back
to the �rst civilisations. The simple model of the Sumerians worked well
enough at that time. However, in the last centuries, especially when paper
and printing press were invented, other archiving techniques had to be devel-
oped. With the invention of the computer, people soon realized that it can
be used to store and retrieve big amounts of information in an automated way.

Vannevar Bush, an American engineer and inventor, published in 1945 the
article "As We May Think". At that time he was director of the O�ce of Sci-
enti�c Research and Development, an organisation that carried out almost all
research and development activities during World War II. In his article Bush
describes his vision of a machine that represents a collective memory and al-
lows users to automatically process and access large amount of knowledge [7].

In the 1950s various ideas emerged, which substantiate the concept of search-
ing text through a computer. H.P. Luhn described in 1957 an important
method. He proposed using words for creating an index and measuring the
overlap of words for the ranking of documents [21].

In the 1960s more developments in the �eld of IR took place. One devel-
opment was certainly the SMART system by Gerard Salton and his stu-
dents at Harvard University. The SMART is a framework that provides

Preliminaries 5

researchers the possibility to improve search quality through multiple experi-
ments [35]. The other development was the Cran�eld evaluation technique by
Cyril Cleverdon and his colleges at College of Aeronautics in Cran�eld. The
Cran�eld test is an evaluation method for retrieval systems, which current
IR systems still use [11]. Both methods were the reason for quicker progress
in the �eld of IR.

The 1970s and 1980s were characterised by various improvements of the pre-
vious methods. The models and techniques were very e�cient in terms of
smaller data sets. Unfortunately, they did not scale when dealing with big
amounts of textual content. The Text Retrieval Conference (TREC) in 1992
changed this issue dramatically. TREC is series of conferences supported
by some US Government agencies. The main target of these conferences is
to bring researchers together and support them in developing methods that
allow to deal with larger text collections in an e�cient way [19].

TREC o�ers in their conferences di�erent tracks, each representing a di�er-
ent domain. These tracks contain domain speci�c information like document
collections, training judgements, evaluation tools. There is also a legal track,
that is explicitly designed for legal professionals. On the one hand, it should
help them to get insights into current tools and methods, and on the other
hand provide them with test collections such that IR systems can be evalu-
ated properly.1

Full-text search engines play an important role in the �eld of information
retrieval. We use the term search engine as an short version for a full-text
search engine. They are mainly responsible for storing and retrieving data.
Figure 1 illustrates an abstract architecture of the two tasks of (i) index-
ing documents and (ii) retrieving the respective documents corresponding to
(concurrent) user search queries. The index is the central data source of all
search engines and is created by splitting the documents into a list of unique
terms. Once the index is created, information can be retrieved through search
queries. Search engines provide functionalities to process search queries con-
currently and rank the results accordingly. Retrieving information from the
index is e�cient, since no full scan of every word in each document has to
be performed, which would be the case in a search without an index. Since
documents are frequently changed, an index has to be constantly updated.
Updates on the index are carried out either dynamically during operation,
or in static batch jobs while the search engine is not available.

1http://trec.nist.gov/data.html

http://trec.nist.gov/data.html

Preliminaries 6

Search engines must be able to meet several challenges e.g. e�ectively creat-
ing and updating the index, retrieving content within a reasonable amount of
time, presenting the relevant content. In the following sections, we describe
those challenges in more detail.

Document
1

Document
2

Document
N

IndexIndex

Indexing
Search Query

Processing

Search Query
1

Search Query
2

Search Query
3

Search Query
...

Figure 1: Core Architecture of a Search Engine

2.1 Index

An index is used to store information in such a way that it can be faster
retrieved through search queries. Thus, the index is an essential part of a
search engine's architecture. In the following section, we describe the struc-
ture of a typical index in more detail.

The inverted index is the most common index structure used in the �eld
of textual retrieval. Dictionary and posting lists are the two main compo-
nents of an inverted index. The dictionary represents a list of unique terms,
extracted from the documents. This dictionary is usually kept in-memory
due to performance reasons. It stores the term and the pointer to the post-
ing list for each term. The posting list of each term represents a list of
documents the term appears in and is usually stored on disk. Some posting
lists contain additional information e.g. position, o�set, frequency of a term
in the respective document [11].

Preliminaries 7

The dictionary and the posting list, are used to process search queries more
e�ectively. The dictionary provides a logical structure on top of the posting
list, which is used to retrieve the terms of the search query in a fast way.
The entries in the posting list are then used to retrieve and rank the relevant
documents matching to the search query. The two main tasks of a search
engine (i) indexing and (ii) search query processing, are usually complemen-
tary. This means that the more information is stored in the index, the less
work has to be done while processing search queries [11].

We describe an example of an index entry creation based on the document
D1 from section 2 in the following part. Creating index entries for the docu-
ment requires �rst of all the division of the text into parts, see the box below.
These parts are called tokens. In our case, we create tokens based on the
white space between the terms. However, other rules can be applied as well
for tokenization.

Das Verfahren über die Bestellung eines Sachwalters ist in jeder

Lage einzustellen [...]

The tokens are then further processed. This process may include a variety of
di�erent �lters e.g. removal of speci�c words, transforming all capital letters
to lower case letters. The �lters are used to reduce the amount of terms
in the index and increase the e�ciency of retrieving the appropriate results.
The most important �lters are described below.

Stop words: A stop word is a word that appears in a phrases, but does not
in�uence the syntax and the semantic of the respective phrase. In most cases
theses words are conjunctions like "and", "or", "because". Di�erent lan-
guages have di�erent stop words. Thus, applications with a full-text search
on di�erent languages must incorporate the list of stop words for the respec-
tive language. In most cases, stop words are not indexed, which results in a
reduction of the index size. The snowball project provides a common list of
German stop words.2 Snowball is a language that processes natural language
through several algorithms. They also integrate a list of German stop words,
which many full-text search engines use. The stop words are crossed out in
the following example. All those words are not indexed.

2http://snowball.tartarus.org/algorithms/german/stop.txt

http://snowball.tartarus.org/algorithms/german/stop.txt

Preliminaries 8

Das Verfahren über die Bestellung eines Sachwalters ist in jeder Lage
einzustellen, wenn das Gericht zu dem Ergebnis gelangt, dass ein Sach-
walter nicht zu bestellen ist. Dabei besteht zum einen keine Verp�ich-
tung des Gerichts, einen bestimmten Verfahrensabschnitt abzuwarten,
zum anderen hat auch noch der Oberste Gerichtshof eine Einstellung
auszusprechen, wenn er mit der erforderlichen Sicherheit zu dem Ergeb-
nis gelangt, dass die Voraussetzungen für eine Sachwalterbestellung nicht
vorliegen.

Stemming: Some search engines make use of algorithms that reduce each
word to its stem. Stemming can be de�ned as followed.

�A stemmer should con�ate together all and only those pairs of words which
are semantically equivalent and share the same stem [9].�

Stemming allows to retrieve more variations of a word, which normally in-
creases the set of search results. However, stemming has some disadvantages.
Stemming algorithms produce sometimes incorrect stems e.g. "ly" can be re-
moved from "cheaply" but not from "reply". Those incorrect stems typically
increase in languages that are morphologically rich e.g. German. Morphol-
ogy describes the study of the forms of words (plural forms, tenses, persons,
etc.) [2]. Thus, some search engines integrate a stemming list. The disad-
vantage is that indexing takes longer, because every word has to be checked
against the list. Moreover, creating and maintaining such a list requires a
lot of time and e�ort. A simple and lightweight algorithm was developed by
Jörg Caumanns at the Free University of Berlin. It was especially designed
for morphologically complex languages like German or Dutch. The most im-
portant parts and characteristics of the algorithm are described below [8].

• Substitution: If a token is stemmable, substitutions of some char-
acters are performed e.g. "österreich" would be transformed to "os-
terreich". However, there are also examples where a substitution can
lead to false positives e.g. "schönung" (�ning) would be transformed

Preliminaries 9

Character Substitute
ä a
ö o
ü u
ÿ ss

Table 1: Stemming Substitutions

to "schonung" (protection). Table 1 shows an extract of the characters
being replaced by the algorithm.

• Su�x: Su�x-stripping is an important part of the stemming process.
The following su�xes are stripped at the end of each term: "e", "s",
"n", "t", "em", "er" and "nd". Although, German has a lot more
su�xes, only these 7 were chosen because of the lower error rate e.g.
"Spieler" would be transformed to "Spiel". However, this simpli�ca-
tion still causes various errors and irregular stems, but produces in
most cases unique discriminators. The discriminator is the common
form of di�erent declensions of the same word. Moreover, it makes the
algorithm much more e�cient.

• Pre�x: Analogously to su�x-stripping, pre�x-stripping can remove
(semantically) redundant pre�xes. The algorithms strips all "ge" pre-
�xes e.g. "gegangen" would be transformed to "gangen". However,
examples exist where the pre�x-stripping can lead to false positives
e.g. "genau" (exact) would be transformed to "nau", which does not
relate to the original term any more.

We applied the substitution, su�x-stripping and pre�x-stripping rules that
are previously described on document D2 from section 2. The result can be
seen in the following box.

Der gemass �20 RL-BA 1977 von einem Rechtsanwalt im Falle eines
personlichen Streites aus der Berufsausubung mit einem anderen
Rechtsanwalt um Vermittlung anzurufende Ausschuss der
Rechtsanwaltskammer ist kein Schiedsgericht im Sinne des �587 ZPO.

As already described, stemming algorithms produce false stems in some
cases due to simpli�cation reasons. Thus, signi�cantly reducing those false
stems requires the hard coding of all the exceptions for substitutions, pre�x-
stripping and su�x-stripping.

Preliminaries 10

Synonyms: A synonym refers to words or phrases that share the same
meaning e.g. intelligent can be associated with smart, bright, brilliant,
sharp.3 A list of synonyms can either be created individually or down-
loaded from Web-sites that maintain synonym lists for the respective lan-
guage. There are various German synonym lists available. A popular one
can be found at Open Thesaurus.4

After creating the tokens and applying the �lter rules, the index is created
and stored. Dictionary and posting lists de�ne the structure of an inverted
index. Both concepts are described below.

Dictionary: The task of the dictionary is to provide a list of terms pointing
to the relevant posting lists on the disk. The terms extracted from the
tokenization process are added to the dictionary. Table 2 shows the structure
of such a dictionary based on our example. It contains a list of unique terms,
which are ordered lexicographically, and the pointer to respective posting list
of the term. Due to simpli�cation reasons we did not apply any �ltering rules
(stop words, stemming, etc.) and displayed only an extract of the ordered
terms. In comparison to the total size of the index, the dictionary is typically
small. The structure of the dictionary is essential for the performance of the
queries. Most commonly the dictionary is either sort-based or hash-based
[11].

Sorted array containing the dictionary entries

Posting lists

abzuwarten anderen anzurufende Auch Aufgabe Ausschuss ...aus

Figure 2: Sort-based Dictionary

3http://www.oxforddictionaries.com/de/definition/englisch_usa/synonym
4https://www.openthesaurus.de/about/download

http://www.oxforddictionaries.com/de/definition/englisch_usa/synonym
https://www.openthesaurus.de/about/download

Preliminaries 11

Term Pointer
abzuwarten 1
anderen 2
anzurufende 3
auch 4
Aufgabe 5
aus 6
Ausschuss 7
auszusprechen 8
Ausübung 9
bei 10
Bei 11
... ...

Table 2: Dictionary

• Sort-based: All terms of a collection are sorted in a lexicographical
order. The terms are arranged either in a sorted array or in a sorted
search tree. When using a search tree, the respective information is
retrieved through a traversal of the tree. Look-up operations in a sorted
list are performed through a binary search. A sorted search tree is
usually created, if the sorted list is too big. The e�ort for the retrieval
of information in a sorted list or a sorted search tree is logarithmic.
Figure 2 illustrates the dictionary structure based on a sorted array.

• Hash-based: Each term in the dictionary has a corresponding entry
in a hash table. The hash table consists of hash values, which can be
created through various hash functions. These functions can be used
to map data of an arbitrary size to data of a �xed size e.g. "John" to
"01", "Lisa" to "02". However, it might happen that 2 or more input
data share the same hash value, which refers to collisions e.g. "John" to
"01", "Lisa" to "01". The problem of collisions can be solved through a
linked list of those terms. Figure 3 visualizes the hash-based dictionary
based on our example. It displays a hash table, which is used to map
keys to an array of buckets. The keys, which are the terms of the
dictionary, are used to calculate a hash value through a hash function
H(key). There are several hash functions available e.g. CRC32, DJB2,
FNF-1. In our example, we selected the hash function CRC32. The
Cyclic Redundancy Check (CRC) is a function that creates a check
value from the input data through polynomial divisions. It is often
used in communication and transmission systems in order to verify

Preliminaries 12

changes in the data. Since CRC creates check values of a �xed length,
it can be used as a hash function as well [5]. After creating the hash
values through the CRC32 function, we assigned the values through
the modulo function to the buckets. The modulo function gets the
remainder of a division, which is used to determine the position in the
array of buckets. We wrote a simple application in Java, which can be
found in appendix A.1, in order to create and assign the hash values.
The buckets contain the information, where the data entries can be
found on the disk. The data entries are composed of the term itself,
the position of the term's posting list and a pointer to the next entry in
the linked list, if multiple terms share the same hash value (collision).

Sort-based and hash-based structure are appropriate depending on the type
of the query. If a single term is queried, hash-based indexes are much more
e�cient than sort-based ones. The reason for this is that a less cost intensive
operation is required to retrieve the dictionary entry for the relevant term.
The operation of retrieving the dictionary entry in constant time, is based
on the assumption that only a few or no hash table collisions occur. Search
queries retrieving a speci�c range or terms with a certain pre�x are much
more e�cient in a sort-based index, since a binary search is applied. The
search is executed in logarithmic time. Thus, in practice it is common having
both index structures [11].

Posting list: The posting list contains the actual data of the index. This
data is used during the querying process to retrieve the documents matching
to the respective query. Each posting list contains at least the pointer to
the corresponding term in the dictionary, and the documents the term ap-
pears in. Additionally, the posting list can also contain further information
e.g. position, o�set and occurrence of a term in the respective document
[11]. The position describes the location of the term in the document e.g.
"abzuwarten" appears in document D1 on the position 38. The o�set de-
scribes the start (�rst character) and end o�set (last character) of a term in
the respective document e.g. "Das" in document D1 has the start o�set 0
and the end o�set 3, "Verfahren" has the start o�set 4 and the end o�set
12. The occurrence determines the frequency of the term in the respective
document e.g. "anderen" appears once in document D1 and once in doc-
ument D2. Table 3 re�ects an extraction of the posting lists based on the
documents in section 2, where each row represents a posting.

Preliminaries 13

0

1

2

4

6

5

Ausschuss

BucketsKey H (Key) -
CRC32

3

x
x

abzuwarten

anderen

anzurufende

auch

Aufgabe

aus

Ausschuss

x

x

x

x

x

x

abzuwarten

x

auchx

Aufgabex

anderenx

anzurufendex

ausx

Entries

bec1c46c

7ec4f3a

f05c1f9a

fd5d34cf

b77a4d73

2d10d530

24425bbe

Figure 3: Hash-based Dictionary

2.2 Search Queries

In section 2.1, we described the creation of an index. In this section, we focus
on retrieving information from an existing index. Search engines integrate
various search features. The most common features, which we explain based
on the documents from section 2, are described below.

Boolean Search: A boolean search applies boolean operators for the re-
trieval of information. The classical boolean operators are AND, OR and
NOT. The query "Verfahren AND Sachwalterbestellung" retrieves document
D1, because the document contains "Verfahren" and "Sachwalterbestellung".
In comparison to the AND operator, the OR operators retrieves the doc-
uments D1 and D2 with the query "Verfahren OR Rechtsanwalt". The
OR operator retrieves documents if and only if they contain "Verfahren"
or "Sachwalterbestellung" or both. The query "Rechtsanwaltskammer NOT
Meinungsverschiedenheit" does not retrieve document D3, since it is only sat-
is�ed if and only if a document contains "Rechtsanwaltskammer" but does
not contain "Meinungsverschiedenheit". The boolean operators can be com-
bined in order to construct more complex queries according to the classical
rules of the boolean algebra [17]. The hash-based approach can be applied in
a boolean search, see section 2.1, since less costs are a necessary to retrieve

Preliminaries 14

Pointer Term Document Position Occurrence
1 abzuwarten D1 38 1
2 anderen D1 40 1
2 anderen D2 20 1
3 anzurufende D2 24 1
4 auch D1 42 1
5 Aufgabe D3 11 1
6 aus D2 15 1
7 Ausschuss D2 25 1
7 Ausschuss D3 7 1
8 auszusprechen D1 49 1
9 Ausübung D3 38 1
10 bei D3 12 1
11 Bei D3 43 1
...

Table 3: Posting List

the information. The reason for this is that the matching term is retrieved in
constant time through the hash value. In the sort-based approach, the dic-
tionary has to be scanned in logarithmic time before retrieving the relevant
information, which results in more costs.

Wildcard Search: Wildcards are place-holders, which allow the user to
�nd di�erent variations of a term. Thus, wildcard queries are mostly used
if the user is uncertain about the spelling of a term e.g. Sidney vs. Sydney,
or di�erent variations of a term. In many search engines the character "*"
is used to match any sequence of characters. However, it is also possible to
determine the amount of characters to be matched. For the latter characters
like "?" or "_" are applied. The di�erent types of wildcard queries are listed
below [25]. The sort-based approach, see section 2.1, for the retrieval of
information is more applicable for the wildcard search. The reason for this
that the entire dictionary is scanned in logarithmic time in order to retrieve
the matching documents. This is less cost intensive compared to the constant
time e�ort of the hash-based approach.

• Right Wildcard: In the right wildcard search the user wants to
match any sequence of characters at the end of the term. Thus, the
query "Sachwalter*" would retrieve results like "Sachwalters", "Sach-
walterbestellung" and "Sachwalter" in document D1. The right wild-

Preliminaries 15

card search is very e�cient, since it makes use of the inverted structure
of the index.

• Left Wildcard: This type of wildcard is also known as leading wild-
card. It is used if the user wants to match any sequence of characters at
the beginning of the term. The query "*stellen" would match in doc-
ument D1 also the terms "einzustellen", "bestellen" and "Einstellen".
The left wildcard search is typically less e�cient, since the query terms
and the terms in the dictionary have to be reversed while executing the
query. E�ective search engines meet the performance issue by storing
each term in the dictionary in an additional reversed form.

• Middle Wildcard: This type of wildcard sets the placeholder in the
middle of a term. So if the user queries for "Recht*kammer" the docu-
ments D2 and D3 would be returned, since they both contain "Recht-
sanwaltskammer". The middle wildard behaves similar to the right
wildcard.

• Precise Wildcard: The precise wildcard is used to determine single
characters that should be replaced by any sequence of characters. In our
example, if a user searches for "Verfahrens__schnitt" the term "Ver-
fahrensabschnitt" in document D1 would match. The precise wildcard
behaves similar to the right wildcard.

Phrase Search: In a phrase search the user looks for multiple terms that
must appear in documents according to the sequence in the query. Since the
order of the terms for such queries is essential, the position of each term must
be stored in the index. In many search engines a phrase search is determined
by placing one quote at the beginning and one quote at the end of the phrase.
So if a user is looking for "Das Verfahren über die Bestellung" document D1
would be retrieved. On the contrary, if the query "Das die Bestellung Ver-
fahren über" is carried out, document D1 would not be retrieved.

Near Search: As in the phrase search, the near search requires the position
of each term to be stored in the index. In a near search, terms or phrases that
are close to each other are retrieved. Whereas, the query "Gericht NEAR
Ergebnis" would retrieve document D1, the query "Verfahren NEAR Sach-
walterbestellung" would not do so. Furthermore, some search engines enable
specifying the distance between two terms or phrases.

Preliminaries 16

Range Search: Many search engines support range queries on ordered val-
ues. The order could be based on numbers or the alphabet. When dealing
with range queries, a dictionary with a sorted list or a sorted search tree
structure is essential. The reason for this is that a binary search can be
applied on the dictionary in logarithmic time, which requires less costs com-
pared to the hash-based approach. In our example, we can assume that the
documents additionally store the following paragraph numbers.

Document D2: "�20"
Document D3: "�28"

If the user searches for "�20 TO �28" documents D2 and D3 would be re-
turned, since it matches the range speci�ed in the query. However, if the
user searches for "�31 TO �41" no documents would be returned, since the
range from the query does not match to the range from the documents.

Auto Correction: Automatic corrections support the user in case of mis-
spelled terms. The search engine provides additional suggestions through
"Did you mean?" if it recognizes di�erences of a user entered term. If the
user is looking for "Gerucht", the search engine would suggest for example
"Gericht". The suggestions are based on a list of correct terms. This list can
be either created and maintained manually or automatically. The manual
generation is exact, since the correct terms are manually chosen, but also
resource and time intensive. That's why many search engines supports to
automatically generate the list from the index.

The terms of the search query are then checked against this list. Suggest-
ing alternative terms requires the measurement of the similarity between the
query term and the list of correct terms. The most important technique
in this �eld is the edit distance. The edit distance between the terms T1
"Buch" and T2 "Tuch" is the minimum number of edit operations necessary
to transform T1 into T2. The most common edit operations are

• insert a character into a string,

• delete a character from a sting,

• replace a character from a string.

The less operations are necessary, the more similar are the terms T1 and T2.
In this case, one operation would be necessary that replaces the character "T"

Preliminaries 17

i(→) B U C H
j(↓) 0 1 2 3 4
T 1 1 2 3 4
U 2 2 1 2 3
C 3 3 2 1 2
H 4 4 3 2 1

Table 4: Levenshtein distance

in T2 by "B" in order to match both terms. The edit distance, which is also
known as Levenshtein distance can be adapted by using di�erent weights
for the operations [25]. The similarity is calculated through the following
algorithm.

di,j = min(di,j−1 + dweight, di−1,j + dweight, di−1,j−1 + dxi=yj) (1)

The algorithm compares each character of the two terms in order to measure
the minimum edit operations. Table 4 illustrates the steps of the algorithm.
In our case we use use a d(weight) of 1. If two characters match d(xi=yj) we
apply 1 and if they don't match we apply 0. The algorithm loops through
all characters of both terms. It starts by comparing the �rst character of
T1 "B" with the �rst character of T2 "T". In this case d(i-1,j)+d(weight)
is 1+1, d(i,j-1)+d(weight) is 1+1 and d(i-1,j-1)+d(xi=yj) is 0+1 since "T"
and "B" don't match. The algorithm proceeds until the last position, which
determines the edit distance, which is 1 in our case.

Taxonomy: A taxonomy describes a structure that organises information
in a hierarchical order [39]. It is used to group information based on categories
e.g. date, time, topics, and is applied in various search features e.g. faceted
search. A faceted search uses the taxonomy in order to display the number of
documents according to the search query in each group. A taxonomy is struc-
tured similar to the index, described in section 2.1. The di�erence, however,
is that the dictionary of a taxonomy is ordered according to the respective
hierarchy. Figure 4 illustrates a faceted search from the job portal Xing.5

We executed the query "data scientist" and received 1,067 results. On the
right side a taxonomy can be seen, which maps the results to the pre-de�ned
hierarchy. The �rst level of the hierarchy is "Tätigkeitsfeld", "Karrierestufe",
etc. The second level of the hierarchy contains in "Tätigkeitsfeld" the facets
"Forschung, Lehre und Entwicklung (597)", etc. The numbers in the brack-
ets determine the amount of results according to the query in the respective
facet e.g. 597 results in the facet "Forschung, Lehre und Entwicklung".

5https://www.xing.com/jobs/

https://www.xing.com/jobs/

Preliminaries 18

Figure 4: Faceted Search

2.3 Ranking

The ranking of documents is an important task of a search engine, since it's
purpose is to retrieve the matching documents according to it's relevance. In
the �eld of IR, several models and techniques for the ranking of documents
exist. However, two 2 major categories can be identi�ed: semantic and
statistical ranking methods. Whereas the semantic approaches try to under-
stand the natural language text of a human user, the statistical approaches
rank the documents, which contain the information, based on some statis-
tical measures that match the user query most closely [17]. In the present
thesis, we focus on the statistical models and describe the main models below.

Early IR systems used complex boolean operations in order to provide the
user information. The disadvantage is that those systems don't have so-
phisticated document ranking functions, since they simply express whether a
document matches a query or not. Although, boolean systems have ranking
options e.g. ordered by date, their rankings are very limited. However, in
large document collections, it is not reasonable for the user to look through
the whole list of resulting documents. Consequently, those boolean systems
are more and more replaced by other solutions, which rank the the docu-
ments matching to the query of the user. To do so, many IR systems assign
a score to every document/query combination. The results are then ranked
based on this score [36].

Preliminaries 19

Before computing the score, a weight has to be assigned to each term in
a document. This weight depends on the number of occurrences of the term
in the document. The simplest approach, to compute the score of a query
term (t) and a document (d), is to assume that the weight is equal to the
number of occurrences of (t) in (d) e.g. "das" appears twice in document
D1, thus the weight for the term "das" would be 2. This approach is called
term-frequency (tf) [34].

Unfortunately, it is not always the case that all terms are equally impor-
tant, which the term-frequency approach assumes. Thus, some terms are
more relevant than others e.g. the term "Gesetz" (law) appears in many RIS
documents and is therefore not so important than the term "Sachwalter"
(trustee), which only appears in speci�c RIS documents. A common ap-
proach to determine the relevance of terms is the document-frequency (df),
which computes the number of documents that contain the respective term
t e.g. term "Gesetz" appears in 181,861 RIS documents, whereas the term
"Sachwalter" can be found in 4,664 RIS documents. Consequently, the term
"Sachwalter" is weighted higher, since it appears in less documents [34].

The term-frequency weights terms higher that appear in more documents. By
contrast, the document-frequency weights terms higher that appear in less
documents. To combine both approaches, the inverse-document-frequency
(idf) has to be calculated [34].

idft = log
N

dft
(2)

In the formula above, N describes the total number of documents. RIS has
currently 1,466,207 document. Thus, the idf for the term "Sachwalter" is
2,50 and the idf for the term "Gesetz" is 0,91. This means that the higher
the idf the higher the importance of the term. The term-frequency (tf) and
the inverse-term-frequency (idf) can now be combined to assign to term (t) a
weight in document (d). These weights are essential for calculating a score for
each query/document pair, such that the most relevant documents according
to a query are ranked �rst. Since, query and document can be represented
as vectors, many search engines apply the vector space model for measuring
the score for each query/document combination [34].

Vector Space Model: The vector space model represents documents and
queries a vectors. A vector (V) is a list of (N) numbers, which can be repre-

Preliminaries 20

sented in form of a column [23].

V =

1
2
3

 (3)

Each document becomes an independent dimension in the vector space. The
tf or tf-idf weights can be determined for every term in each document and
inserted in the vector space. Since not every term from the dictionary appears
in all documents, most vectors are sparse. This means that the number 0 is
assigned to a term, if it doesn't occur in the respective document [23]. Below
is a simple example of a vector space with 3 documents, 3 terms and the
corresponding the tf-weights.

Doc1 Doc2 Doc3

Gesetz 5 20 1
Sachwalter 2 3 0
neu 15 2 8

 (4)

But not only the documents are vectors, also the query itself can be rep-
resented as a vector. A typical approach to calculate the score for each
query/document pair, is the cosine similarity. This approach computes the
similarity between the query-vector V(q) and the document-vector V(d). The
numerator is the inner product (dot product) of the vectors V(q) and V(d),
while the denominator represents the product of the Euclidean lengths [23].

score(q, d) =
~V (q) · ~V (d)

|~V (q)||~V (d)||
(5)

The inner product multiplies is the sum of the product of two vectors e.g.
V (Doc1) · V (Doc2) = (5 · 20) + (2 · 3) + (15 · 2) = 136.

InnerProduct(q, d) =
n∑

i=1

V (q)i · V (d)i (6)

The Euclidean length is the distance is the distance between two vectors e.g.
|V (Doc1)||V (Doc2)| = (52 + 22 + 152)2 · (202 + 32 + 22)2 = 323, 89.

EuclideanLength(q, d) =

√√√√ n∑
i=1

V (q)2i ·

√√√√ n∑
i=1

V (d)2i (7)

Preliminaries 21

Term Query Doc1
tf df idf tf-idf(t,q) tf idf tf-idf(t,d)

Gesetz 1 181,861 0,91 0,91 5 0,91 4,55
Sachwalter 1 4,664 2,50 2,5 2 2,5 5
Neu 0 76,844 1,28 0 15 1,28 19,2

Table 5: Vector Space

Inserting the values of the inner product and the Euclidean length in the score
formula produces the result of 0,42. The score (cosine similarity) is bound
between 0 and 1, if all values of the vectors are positive. A cosine similarity
of 1 means that the vectors have the same orientation, which means that the
vectors perfectly match. By contrast, a cosine similarity of 0 means that the
vectors are orthogonal and therefore not similar.

Table 5 shows an example of a possible vector space. In the example, we
assume the query (q) "Sachwalter Gesetz", which we use to measure the
score of document (Doc1) from the previous example. In the example we as-
sume a total number of 1,466,207 documents. We compute the tf-idf weight
for each term, such that we can create a query vector tf-idf(t,q) and a docu-
ment vector tf-idf(t,d). Applying the score formula on both vectors produces
the score 0,67. This means that the query (q) is similar to document (Doc1).

2.4 Evaluation Methods

Analysing and evaluating the quality of search results requires a test collec-
tion. TREC provides such test collections for di�erent domains. The search
results are then compared to those test collection. The most common tech-
niques are precision and recall. Those two concepts are used to determine
the accuracy of the search results [38].

Recall relates the relevant retrieved results (Ra) to the set of relevant docu-
ments (R).

Recall =
Ra

R
(8)

In contrast to recall, precision is de�ned as the proportion of the relevant

Preliminaries 22

retrieved results (Ra) to all documents (A).

Precision =
Ra

A
(9)

The F-measure is a way to calculate the e�ectiveness of a search application.
It is based on recall and precision and used to evaluate the classi�cation
performance.

F =
2RP

R + P
(10)

Assuming that a test collection has 100 relevant retrieved results (Ra), 200
relevant documents (R) and a total number of 500 documents (A), would
produce a recall of 50 %, a precision of 20 % and an F-measure of 0,29 %.
This means that half of the results are positive, but only 20 % of the results
are accurate. The low F-measure of 29 % indicates that the search engine
does not retrieve results e�ectively.

The relationship between precision and recall is in general inverse. The more
items are retrieved by the search engine the greater is the probability that
relevant documents from the overall collection are retrieved. The recall has
the value 1 when all documents are retrieved. However, this e�ect results in
a retrieval of more irrelevant documents. Thus, the precision will decrease,
the more documents are retrieved [38].

The test collections are manually created by judges and domain experts.
Unfortunately, in case of larger data sets this process takes too long and is
simply not feasible. Thus, several methods were developed that allow to de-
termine a smaller set of documents. This set is then manually judged, such
that the probability of relevant documents outside this set is low. Pooling,
which is one possible method, constructs the set of relevant documents by
putting together the top N results extracted from a set of n systems. In TREC
the value of N is 100. The documents of the pool are then manually judged
by humans, which is feasible due to the reasonable amount of documents [38].

Precision and recall are quantitative evaluation techniques. Nevertheless,
also qualitative techniques exist. One additional way is conducting inter-
views with domain experts. It is a question-answering method, where the
experts are given a set of queries. In the next step, they have to de�ne the

Preliminaries 23

documents they would expect from the corresponding query. The retrieved
results are then compared to the expected document set. However, queries
might return a vast amount of results. Thus, usually a smaller set of docu-
ments is de�ned and checked within the �rst N results of the document set
retrieved by the query [41].

The previously discussed methods evaluate the quality of the search results.
Though, it is important to mention that there are many other ways of eval-
uating IR systems like indexing times, size of the index, stability, scalability.

2.5 Additional Methods and Techniques

In the previous sections, we talked about the basic IR concepts. In this
section, we focus on further methods and techniques, which can be used to
improve the search experience and enrich the search.

On possibility to enrich the search experience is to extract additional in-
formation from texts e.g. categories, metadata. We refer this concept to
Information Extraction (IE).

�Information extraction is the task of �nding structured information from
unstructured or semi-structured text [1].�

In the �eld of information extraction, Natural Language Processing (NLP)
methods are applied in order to extract structured information from the re-
spective documents. NLP combines the �elds computer science and linguis-
tics by focusing on the interaction between computers and natural language
[22]. In the following part of this section, we describe two important NLP
concepts: Entity Extraction and Classi�cation.

Entity Extraction: An important NLP task, which is called Named-entity
Recognition, is the extraction of entities from documents. Those entities are
typically metadata e.g. dates, locations, names, which can be automatically
extracted and used for di�erent search features e.g. faceted search [12].

However, NLP methods are not the only way to extract information from doc-
uments. Regular expressions are another way of extracting information from
texts by applying certain rules. Regular expressions are speci�c characters,
which describe search patterns. The name is derived from the mathematical
theory they are based on. They can be used to execute certain actions when

Preliminaries 24

being detected in a data set e.g. extract information, split text.6

Example: E-mail recognition

• Document: "The E-mail address max.mustermann@wu.ac.at"

• Regular Expression: "\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,}\"

• Description: The regular expression would identify and extract the E-
mail address of the document above.

Example: Paragraph recognition

• Document: In this example, we refer to the documents in section 2.

• Regular Expression: "(�[0-9][0-9])|(�[0-9][0-9][0-9])"

• Description: Applying the regular expression on the documents in sec-
tion 2, would detect the following paragraphs: "�20", "�587", "�28",
"�37".

Classi�cation: Another important NLP task refers to the classi�cation
of documents. Classi�cation methods are used to identify patterns within
or between documents. This information can be used to identify similar
documents and derive categories for those documents e.g. labour law, en-
vironmental law. Those categories can be used to provide the user similar
documents when searching in a speci�c domain.

The Support Vector Machine (SVM) is a popular supervised-learning model
that can be used to classify data. As it is a supervised-learning model, it re-
quires a labelled training data. This training data is composed of categories
and data, in our case documents, assigned to those categories e.g. "environ-
mental law". The documents in the categories have certain features (weights)
e.g. documents containing the terms "environment", "nature" are assigned
to the category "environmental law", and are represented as a vector of those
features, see section 2.3. The algorithm matches the input data against the
training data in order to classify the data. The classi�cation is performed
through support vectors and hyperplanes. Each category in the training set
has certain support vectors. These support vectors are used to determine
the optimal hyperplane. The hyperplane is the median between two support

6http://www.regular-expressions.info/

http://www.regular-expressions.info/

Preliminaries 25

vectors and is used to separate data sets. The optimal hyperplane is the
one with the highest margin (distance between the two support vectors) and
without data between the support vectors [18].

Extract Transform Load: The Extract, Transform and Load (ETL) pro-
cess is used to extract the relevant data from potentially various data sources,
transform the data to the relevant schema or format and load it to the de-
sired location. This process can be used to get the relevant data, which is
then indexed by a search engine. There are various tools available ranging
open-source e.g. Talend Open Studio, to commercial ones e.g. SAS ETL.
Most of those tools have a graphical interface in order to design the ETL
process [40].

2.6 Implementations

Relational Database Management Systems (RDBMS) have been used to man-
age structured and unstructured data for a long time. Relational databases
are very e�cient on structured data, but lack performance when dealing
with large sets of unstructured data. With the rising amount of unstruc-
tured data, new solutions were developed handling those data in an e�cient
way. Open-source search engines emerged ranging from Application Pro-
gramming Interfaces (API) e.g. Lucene, to standalone search environments
e.g. ElasticSearch. But not only open-source solutions were developed, also
commercial search engines e.g. Mindbreeze InSpire, HP Autonomy. were
launched. The classical relational database vendors IBM, Microsoft, Oracle.
reacted to those upcoming full-text search engines and started integrating
full-text search features in their relational databases [3]. Below are the most
important search solutions listed.

• Relational database vendors: IBM DB2, Microsoft SQL Server,
MySQL, Oracle, PostgreSQL

• Open-source search engines: Lucene, Solr, ElasticSearch

• Commercial search engines: Google, Mindbreeze InSpire, HP Au-
tonomy, IBM

Google, which is known for its large scale web search engine, o�ers the Google
Search Appliance. A Search Appliance is a package of IR software and op-
timized hardware. But Google is not the only vendor of those Search Ap-
pliances. Other vendors like Mindbreeze, started to develop such Search

Preliminaries 26

Appliances as well. Since hardware and software are o�ered together, the
customers don't need to provide additional resources and capacity in their
existing IT infrastructure.

Tab Description
Bundesrecht Federal law
Landesrecht National law
Gemeinderecht Municipal law
EU-Recht European Union law
Judikatur Judicature
Erlaesse Decrees
Gesamtabfrage Query on all collections
Uebersicht Site-map

Table 6: RIS Tabs

3 RIS - The Austrian Legal Information Sys-

tem

The Austrian Legal Information Systems, in German "Rechtsinformation-
ssystem" (RIS), is hosted by the Federal Chancellery of Austria and repre-
sents one of its longest running projects in the digital age. RIS is a collection
of the Austrian legislation and jurisdiction. It was initially developed only
for the public administration. Since 1998 the general public has access to the
system free of charge and without any registration. Furthermore, the rele-
vant legal information can be retrieved through all common web browsers at
any time [6].

Figure 5 illustrates the main page of the RIS Web-site, which classi�es the
Austrian legal information in 5 categories. Table 6 describes those categories.
The other parts of the Web-site contain information about RIS and links to
Web-sites that provide legal information.

The Austrian Legal Information System collects a lot of information on Aus-
trian and European law. Nevertheless, it is important to mention that RIS
only provides information and the authentic version of the Federal and State
law. It does not o�er any legal advices [4].

3.1 Access and Design

RIS is accessed by professionals like judges, lawyers. as well as non-professionals.
The Federal Chancellery provided us with some access statistics that were
taken from the logs of the web server. The observation period was 1 month,
from the 16th of April 2011 to the 16th of May 2011. The analysis showed
that the majority of page visits occur during the standard working week from

27

RIS - The Austrian Legal Information System 28

Figure 5: Screenshot of the Austrian Legal Information System

Monday to Friday. At the weekend RIS is not used on a frequent basis. Ac-
cording to the statistics only eleven percent of the total visits fall on Saturday
and Sunday. The peak of visits during the observation period was reached
on Monday. Figure 6 illustrates an analysis of the page visits and queries on
an hourly basis, accumulated over the whole observation period. It can be
seen that the majority of visits and requests fall on the period from 06:00
a.m. to 5:00 p.m. Outside the regular working time from 5:00 p.m. to 06:00
a.m. only a small percentage visited the page or retrieved some information.
During this 1 month around 75 million page visits were recorded. In total
the web server identi�ed 78 million visits. The di�erence of 3 million can be
attributed to spiders and bots mostly coming from web search engines like
google or yahoo. About half of the page visits, namely 43 million can be
related to search queries. On average this means 1,4 million queries per day.
Table 7 re�ects these queries in more detail. According to the statistics 0,3
percent of the daily queries were incorrect due to users' applying an invalid
query syntax.

The analysis of the statistics highlights that the page visits and user queries
are mostly spread over a regular working week. Moreover, the statistics in-
dicate that there are no high peaks of user queries that might lead to issues
in terms of search performance.

Figure 7 illustrates the search mask of the Consolidated Federal Law. Every

RIS - The Austrian Legal Information System 29

Queries per day Amount
Successful 1.407.600
Cached 1.058.309
Redirected 50.815
Incorrect 4.005

Table 7: RIS Statistics

search mask looks slightly di�erent since they are all based on a di�erent un-
derlying database. Section 3.3 re�ects how the data is stored and queried in
more detail. Nevertheless, this search mask is a good representative, because
it contains all common elements. Typically a user can search over all con-
tent of this data set through the �eld "Suchworte". The other search �elds
reference to metadata allowing the user to re�ne the search and present the
content in a structured form. The user can specify a date range, select from
a drop down list or enter the search terms in an open text �eld.

Figure 6: Web-site visits and user queries

3.2 Architecture

In this section we describe the technical architecture of the information sys-
tem. Figure 8 shows the architecture that is composed of 4 basic layers.

• Data: RIS has 31 databases, which di�er in attributes, tables, amount
of documents and content. Each of the databases contains legal infor-
mation focusing on a speci�c part of the Austrian Law.

• Database Server: To guarantee fail safety, two database servers exist
that have redundant data stored and run on physically di�erent ma-

RIS - The Austrian Legal Information System 30

Figure 7: Screenshot of the Consolidated Federal Law search mask

chines. The database server Microsoft SQL Server 2008 R2 is currently
used at this layer.

• Application Server: The application server is responsible for load-
balancing and fail-over processes.

• Web Server: Each of the physically distributed server clusters has
two web server running.

Figure 9 describes the steps that are necessary to load the data to the
relevant database. The legal content is delivered in �les with various formats.
The dispatcher is used to regulate the process of these incoming �les. In the
next step the converter transforms the metadata XML into the RIS-Import
XML. Moreover, the server creates the User Data XML out of word docu-
ments or parts of the metadata XML. Additionally, the server creates Word
and PDF documents, which can be retrieved by the user in the search pro-
cess. Finally, the respective information is loaded to the relevant database.

RIS - The Austrian Legal Information System 31

A
p

p
lic

at
io

n

Se
rv

e
r

D
at

ab
as

e

Se
rv

e
r

RIS
Database

D
at

a

Replication

W
e

b
 S

e
rv

e
r

Figure 8: RIS Architecture

3.3 Data and Search

Each database contains di�erent data structures. However, they all share a
similar core structure. A detailed description of the database "Bundesnor-
men" can be found in appendix D.1. The names of the tables are always
pre�xed with the current name of the database, followed by the description
of the respective table. The metadata of a document can be found in the
table Dokument and the text itself is stored in the table "Nutzdaten". The
other tables contain additional information to the format and history of each
document. The views are queries over several columns in the table, which
are relevant for a full-text search.

As described in section 3.2, RIS uses Microsoft SQL Server 2008 R2 in or-
der to store and query data. RIS makes use of several technologies that are
natively supported by Microsoft SQL Server to retrieve information. The
full-text search uses the native full-text search engine. This engine is com-

RIS - The Austrian Legal Information System 32

Metadata XML Word Document
PDF Document

(optional)
Metadata XML CPL Document

Dispatcher

Converter

PDF

Word

Metadata

XML

Xml Import

PDF

Word

User Data

XML

RIS-Import

XML

RIS

Database

Simple text
format

Figure 9: RIS Import

posed of the SQL Server process and the �lter daemon host process. Figure
10 shows the full-text search architecture of the SQL Server. The user tables
contain the actual data in the database to be full-text indexed. The crawler is
responsible to trigger the indexer, which actually creates the full-text index.
The full-text engine, responsible for the full-text compilation and execution
of queries, also starts the �lter daeomon host process. This process deals with
the accessing, �ltering, word breaking and stemming of the textual content
[27].

As described above, SQL Server o�ers build in full-text search functionalities.
Full-text queries make use of the predicates CONTAINS and FREETEXT
and functions CONTAINSTABLE and FREETEXTTABLE. The predicates
CONTAINS and FREETEXT are speci�ed in the WHERE or HAVING
clause of a SELECT statement. Both of them can be combined with other
SQL predicates. The full-text predicates return a TRUE or FALSE value.
The result set lists the rows that matches to the user query. Furthermore,
the language to be searched for can be speci�ed. This is relevant for stem-

RIS - The Austrian Legal Information System 33

SQL Server process

Full-text
Engine

SQL query
compilation

SQL query
execution

Client
query

Full-text query
compilation

Full-text query
execution

Thesaurus

Stoplist

Full-text index

Indexer
Filter

daemon
manager

Filter daemon host

Protocol
handler

Database data Filters Textual content Word breakers

D
at

a
to

 b
e

in

d
e

xe
d

A
d

d
it

io
n

al

in
fo

rm
at

io
n

User table

Crawl-
threads

Figure 10: SQL Server Full-text Architecture (based on [27])

ming, stop words or thesaurus lookups. The predicate CONTAINS can be
used for precise search on single terms or phrases as well as pre�x, proxim-
ity or weighted search. It is necessary to specify at least one condition in
which column the user is searching in and the search query itself. Logical
operators can be used to combine search conditions. In contrast to CON-
TAINS, FREETEXT returns results if any term matches the query. While
CONTAINS looks for exact matches of the phrase, FREETEXT breaks the
phrase into individual words. CONTAINSTABLE and FREETEXTTABLE
are similar to CONTAINS and FREETEXT. The di�erence is that they re-
turn an additional RANK column. This column is used to specify a ranking
value for each row based on several statistical indicators, see listing 4. Table
8 summarizes the full-text search features and describe by which predicate
they are supported [26].

RIS - The Austrian Legal Information System 34

Query Description Supported by

Simple term One or more speci�c terms

or phrases

CONTAINS and CONTAINSTABLE,

FREETEXT and FREETEXTTABLE

Pre�x term A term starting with a

speci�ed text, also known

as wildcard search

CONTAINS and CONTAINSTABLE

Generation

term

In�ectional forms of a spe-

ci�c term, also known as

stemming

FREETEXT and FREETEXTTABLE

by default, CONTAINS and CON-

TAINSTABLE via optional INFLEC-

TIONAL argument

Proximity

term

Terms or phrases close to

each other, also known as

near search

CONTAINS and CONTAINSTABLE

Thesaurus Synonyms for terms FREETEXT and FREETEXT-

TABLE by default, CONTAINS

and CONTAINSTABLE via optional

THESAURUS argument

Weighted

term

A weighting value de�nes

the importance of a term

or a phrase

CONTAINS and CONTAINSTABLE

Table 8: Microsoft SQL-Server FTS Features

The following examples are intended to explain the basic concepts of the
SQL Server full-text search. All examples are based on the documents from
section 2.

Listing 1: SQL CONTAINS with Boolean and Wildcard Search

1 SELECT *

2 FROM Table_1

3 WHERE CONTAINS(Column_1, ' "Oberste Gerichtshof" AND "Sachwalter*"

')

The query from listing 1 uses the CONTAINS predicate in combination with
a boolean and wildcard search. It selects all columns from "Table_1" and
carries out a full-text search on "Column_1". The full-text query would re-
trieve document D1, since it matches the phrase "Oberste Gerichtshof" and
the terms "Sachwalterbestellung", "Sachwalters", "Sachwalter".

RIS - The Austrian Legal Information System 35

Listing 2: SQL CONTAINS with Proximity Search

1 SELECT *

2 FROM Table_1

3 WHERE CONTAINS(Column_1, ' Rechtsanwalt NEAR Vermittlung')

Listing 2 represents a full-text query using a proximity search. It applies the
CONTAINS predicate and searches for the term "Rechtsanwalt" being close
to the term "Vermittlung". This is the case in document D2.

Listing 3: SQL CONTAINS with Stemming

1 SELECT *

2 FROM Table_1

3 WHERE CONTAINS(Column_1, ' FORMSOF (INFLECTIONAL, Sachwalters) ')

Listing 3 describes a full-text query that uses the native stemming function-
ality of SQL Server. Microsoft natively supports a German stemmer.7 How-
ever, the documentation does not provide any information which stemming
algorithm is being used. If the German stemming algorithm from section 2.1
was applied, the above query would retrieve the terms matching to "Sach-
walter" and "Sachwalters".

Listing 4: SQL CONTAINSTABLE with Term Weights

1 SELECT *

2 FROM Table_1

3 INNER JOIN CONTAINSTABLE (Column_1, ' ISABOUT (Rechtsanwalt WEIGHT

(0.8), Sachwalter WEIGHT (0.2)) ') AS ColumnR

4 ON Table_1.ID = ColumnR.[KEY]

5 ORDER BY ColumnR.RANK

The query from listing 4 applies a full-text search with the CONTAINSTA-
BLE predicate, which additionally allows to rank the retrieved results. The
ranking is based on various statistical values e.g. Occurrence, IndexRow-
Count.8 In the full-text query we make use of the term weight feature, which
allows determining the importance of speci�c terms. The weights range from

7https://technet.microsoft.com/en-us/library/ms142509%28v=sql.105%29.

aspx
8https://technet.microsoft.com/en-us/library/ms142524%28v=sql.105%29.

aspx

https://technet.microsoft.com/en-us/library/ms142509%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/ms142509%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/ms142524%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/ms142524%28v=sql.105%29.aspx

RIS - The Austrian Legal Information System 36

0 (lowest importance) to 1 (highest importance).9 In our case, we give the
term "Rechtsanwalt" more importance than the term "Sachwalter". Thus,
document D2 would be ranked before document D1.

Listing 5: SQL FREETEXT

1 SELECT *

2 FROM Table_1

3 WHERE FREETEXT(Column_1, 'Meinungsverschiedenheit

Kammermitgliedern')

Listing 5 illustrates a full-text query using the FREETEXT predicate. In
contrast to the CONTAINS predicate, the FREETEXT predicate looks for
each term individually. In our example, the query retrieves documents con-
taining the term "Meinungsverschiedenheit", or "Kammermitgliedern" or
both. Document D3 would be returned, since both terms appear in this
document.

RIS makes also usage of the LIKE predicate on some metadata �elds. How-
ever, the LIKE predicate has some drawbacks compared to full-text search.
First of all, LIKE works on character patterns. This means that it scans
every character in a text in order to �nd patterns matching to the query.
Also, a LIKE query lacks performance when it is carried out against a large
amount of unstructured text. Performance issues arise, because LIKE always
scans the whole data whereas a full-text search uses the full-text index to
retrieve information, see section 2.1. A LIKE query against millions of rows
of textual content can take minutes to return, whereas a full-text query can
take only seconds or less against the same data, depending on the number of
rows being returned [28].

Listing 6: SQL LIKE

1 SELECT *

2 FROM Table_1

3 WHERE Column_1 LIKE 'Oberste Gerichtshof' AND Column_1 LIKE

"Sachwalter%"

Listing 6 illustrates a LIKE query, which is equivalent to the query from list-
ing 1. The LIKE operator supports all types of wildcard queries, see section

9https://technet.microsoft.com/en-us/library/ms142577%28v=sql.105%29.

aspx

https://technet.microsoft.com/en-us/library/ms142577%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/ms142577%28v=sql.105%29.aspx

RIS - The Austrian Legal Information System 37

2.2. Moreover, a range for single characters can be de�ned e.g. [a-f]. Finally,
the LIKE predicate can be combined with other SQL predicates e.g. AND,
OR, NOT, BETWEEN.10

Listing 7 shows a RIS query using the full-text search functionalities of
SQL Server. The user searched for "Fahrstreife* nahe Radfahrstreifen*"
in the �eld "Suchworte". The query retrieved results matching to term
"Fahrstreife" being close to term "Radfahrstreifen". Furthermore, the user
applied a right wildcard search on both terms. The full-text search predicate
CONTAINSTABLE in order to rank the retrieved results.

Listing 7: RIS Full-text Search

1 SELECT [...]

2 FROM BundesnormenDokument

3 INNER JOIN CONTAINSTABLE (BundesnormenSuchworteView,

(Suchworte), @suchworte) AS VolltextSuchworte ON

BundesnormenDokument.[ID] = VolltextSuchworte.[Key]

4 WHERE

5 ((BundesnormenDokument.Inkrafttretedatum is null or

BundesnormenDokument.Inkrafttretedatum <= @vonDatum)) AND

6 ((BundesnormenDokument.Ausserkrafttretedatum is null or

BundesnormenDokument.Ausserkrafttretedatum >= @bisDatum))

7) AS [Selection] ON [Complete].[ID] = [Selection].[ID] AND

[RowNumber] BETWEEN @firstRow AND @lastRow ORDER BY [RowNumber]

8 OPTION (OPTIMIZE FOR UNKNOWN);',N'@suchworte

nvarchar(38),@vonDatum datetime,@bisDatum datetime,@firstRow

int,@lastRow int',@suchworte=N'"Fahrstreife*" NEAR

"Radfahrstreifen*"',@vonDatum='2015-01-31

00:00:00',@bisDatum='2015-01-31

00:00:00',@firstRow=1,@lastRow=10

3.4 Requirements

The SQL Server has various built in full-text search features, see section
3.3. However, some full-text search features are not supported by the SQL
Server. The full-text predicates enable middle and right wildcards, but do not
allow left and precise wildcards. Though, this can be solved with the LIKE
predicate, massive performance issues would arise on large texts. Moreover,
faceted search, auto corrections and range search are not supported by the

10https://msdn.microsoft.com/en-us/library/ms179859%28v=sql.105%29.aspx

https://msdn.microsoft.com/en-us/library/ms179859%28v=sql.105%29.aspx

RIS - The Austrian Legal Information System 38

SQL Server. Ranges queries can be performed in the SQL Server, but not
on the full-text index.

Due to those limitations, we developed together with the Federal Chancellery
of Austria requirements for a full-text search in RIS. Table 9 illustrates those
requirements. The requirements range from standard full-text search fea-
tures as described in section 2, to speci�c RIS functionalities. The further
evaluations of alternative search solutions are based on those requirements.

RIS - The Austrian Legal Information System 39

ID Requirement Description

1 Wildcard Support of left, middle, right and precise wildcard

search

2 Phrase Search Exact full-text search in text and metadata �elds

3 Near Search Near search on terms and phrases with the possibil-

ity to specify the distance between those terms and

phrases

4 Boolean Search Support of logical search operators

5 Combined Search A combination of wildcard and near search must be

supported

6 Special Characters Since RIS has many special characters, the informa-

tion which characters are indexed or used for term

splitting is mandatory

7 Numbers Search for numbers with leading zeros has to be sup-

ported

8 Non-Breaking Space Non-breaking spaces have to be treated as breaking

spaces

9 Metadata and Full-text

Search

Concurrent search on metadata and full-text index

10 Stemming Support of stemming features

11 Validation of Queries Validation of the user query before it is sent to the

server

12 Current Search Functions The current search functions, which make the re-

trieval of information easier for the user, must be

able to implement

13 Scalability The search solutions must be scalable

14 Performance The query times have to be in the two digits area

15 Updates Updating the index must be possible

16 Auto Correction Suggestions like 'Did you mean?' in case of mis-

spelled queries

17 Range Search Range queries on the full-text index

18 Group of Words De�nitions of group of words that belong together

and are being indexed as one term

19 Group of Words including

Stop Words

De�nition of group of words, which must include stop

words

20 Faceted Search De�nition of categories, such that facets can be cre-

ated

21 Segmentation Formulating multiple segments in a �eld of a doc-

ument in order to retrieve content that belongs to-

gether

22 Canonisation of Group of

Words

Transforming group of words into a canonical format

such that di�erent spellings are found

23 Synonyms Integration of a synonym list must be possible

24 Global Search Search over di�erent indices

Table 9: Requirements

4 Evaluation of Search Engines

As discussed in section 3.2, RIS uses the Micorosoft SQL Server 2008 R2
for indexing and searching legal documents. The SQL Server is a relational
database from the Microsoft Corporation. With the rising demand of retriev-
ing high volumes of textual content, new search solutions were developed.
These search solutions are optimized for textual content and cover a wide
range of vendors and technologies, see section 2.6. With the SQL Server
2005, Microsoft started to provide their customers with full-text search fea-
tures.11 Although, the SQL Server 2008 R2 o�ers various full-text search
features, refer to section 3.3, not all requirements of a RIS full-text search
can be met. Those requirements cover a wide range of full-text search fea-
tures tailored to the needs of RIS platform, see section 3.4.

This chapter describes the evaluation of 2 full-text search engines. Since
there are various search solutions on the market, we discuss in section 4.1
the selection of the respective solution. The implementation of the RIS full-
text search requirements is described in section 4.3. If requirements are not
supported out of the box by the respective search solution, we describe in
detail one possible workaround. However, it is important to mention that
there might be di�erent alternative solutions to implement the requirements
as well. Finally, in section 4 we evaluate both solutions.

4.1 Selection of Search Engine

There are plenty of di�erent search engines on the market. Those search
engines are used in many domains e.g. web search, enterprise search. Google
and Yahoo are famous web search engines, which crawl and index millions
of Web-sites around the world. Search engines can also be incorporated in
Web-site to make the content of the site retrievable. Furthermore, companies
use enterprise search engines in order to index and search di�erent data
sources within the company. Thus, search engines play an important role
by making the di�erent kind of unstructured data retrievable. In this thesis,
we exemplary evaluate one open-source and one commercial search engine.
Comparing an open-source with a commercial search engine allows us to get
insights into two solutions with di�erent strength and target customers. The
selection of those two search engines is described in this section.

11https://msdn.microsoft.com/en-us/library/ms142571%28v=sql.90%29.aspx

40

https://msdn.microsoft.com/en-us/library/ms142571%28v=sql.90%29.aspx

Evaluation of Search Engines 41

4.1.1 Lucene - Open-Source Search Engine

In this section, we describe the selection of the open-source search engine.
There are plenty of powerful open-source search engines available ranging
from APIs to standalone search engines. The most popular ones are Lucene/-
Solr and ElasticSearch.

Lucene is a scalable, high performance IR library released under the Apache
Software License. It is an open-source project implemented in Java. Lucene
enables enriching your applications with many full-text search features. Those
features can be implemented through a powerful core API [24].

Solr is a standalone full-text search engine, which was developed in Java.
It is built on top of Lucene and runs as a servlet in a container like Apache
Tomcat or Jetty. Solr was originally developed to provide search functional-
ities for corporate Web-sites. It is an open-source project that got o�cially
released as a project of the Apache Software Foundation in 2006. Solr pro-
vides many full-text search features, distributed search and index replication.
The strength of Solr is its scalability and fault tolerance. Lucene represents
the core of Solr and is responsible for indexing and searching. Solr and Lucene
were merged in 2010 [37].

Elasticsearch was developed by Shay Banon and is a standalone full-text
search engine developed in Java. It is an open-source project released under
the Apache License. Elasticsearch is also based on Lucene, which is respon-
sible for indexing and searching processes. Thus, it enriches Lucene similar
to Solr with additional functionalities like multitenancy and scalability [13].

We decided to use Lucene for the evaluation, because a vast amount of search
engines are based on it. Moreover, it is widely spread and supported by a
huge community.

4.1.2 Mindbreeze - Commercial Search Engine

This section deals with the selection of the commercial search engine. Since
there are various commercial search engine vendors on the market, we used
the Gartner Magic Quadrant for Enterprise Search to get a better overview
of the available solutions.

Gartner, Inc. is an Information Technology (IT) research and advisory com-
pany, which provides insights mainly for Chief Information O�cers (CIO)

Evaluation of Search Engines 42

and leading IT sta�. In August 2015 Gartner published the Magic Quad-
rant for Enterprise Search. The Magic Quadrant is a research in a speci�c
market, which compares di�erent competitors based on pre-de�ned evalua-
tion criteria. Every vendor gets a speci�c score at the end of the evaluation
determining his position in the graphical representation [15].

Each of the 4 quadrants has speci�c characteristics that are described be-
low.

• Leaders: Vendors in this quadrant are able to execute their current
vision and are well positioned for future challenges.

• Visionaries: Vendors have a good feeling for the market, but are not
able to execute their vision well.

• Niche Players: Vendors in this quadrant are specialised in a small
segment, or do not even focus on any segment. Additionally, they
usually do not outperform other competitors.

• Challengers: Vendors might be able to dominate a large segment, but
do not really understand in which direction the market moves.

Figure 11 shows the Gartner Magic Quadrant for Enterprise Search. Gartner
compared 15 vendors based on multiple criteria. They contacted the company
Mindbreeze and were able to initiate a cooperation. Mindbreeze is an Aus-
trian based �rm that specialized on enterprise search and information access.
Mindbreeze provides their customers with the Mindbreeze InSpire, which is
a Search Appliance applicable for enterprise and web search. Mindbreeze
achieved a very good result in the Gartner Magic Quadrant on Enterprise
Search, since it was positioned as challenger with the highest ability to exe-
cute. This means that company can react to market changes very quickly [16].

Gartner described the strength and weaknesses of each vendor. They pointed
out that Mindbreeze performs well in terms of search capabilities going be-
yond enterprise search e.g. automatically classifying incoming documents.
Moreover, Mindbreeze o�ers responsive design and mobile app capabilities,
which cover many di�erent devices. Gartner also identi�ed that Mindbreeze
has many connectors, which allows their customers to index various data
sources. According to Gartner one caution is the rather di�cult usage of
relevancy models based on user behaviour. Furthermore, Mindbreeze is not
well known outside Europe and has a small but improving network of part-
ners. The number of documents indexed determine the price. Hence, the

Evaluation of Search Engines 43

client needs to know the amount of repositories and documents they would
like to index [16].

Figure 11: Magic Quadrant on Enterprise Search (based on [16])

4.2 Technical Characteristics

In this section, we describe the basic architecture of Lucene and Mindbreeze.
The technical characteristics are essential in order to understand the main
di�erences between both solutions.

4.2.1 Lucene

As described in section 4.1.1, Lucene is a very powerful search engine that
can be used to index and search data stored in di�erent �les like web pages,

Evaluation of Search Engines 44

Microsoft Word documents, PDF documents, etc. Lucene was originally
developed by Doug Cutting. In 2001 Lucene entered the Apache Software
Foundation and was part of Jakarta. Jakarta is a family of high quality open
source Java products.12 The �rst release under the Apache Software License
was made available in June 2002. Lucene was developed due to the lack of
open-source search engines. It has a strong community, which contributes to
the further improvement of the software [20].

In 2005 Lucene turned from a sub project of Jakarta to a top level Apache
project. While sub-projects like Solr merged into the Lucene project, other
projects like Hadoop, Mahout, Nutch or Tika became own top level projects.
Lucene is used in a variety of applications that range from social networks
and �nancial services to governmental applications. Although Lucene was
developed in Java, it is also available in other languages like Perl, C++,
Python and Ruby [31].

Indexing and searching are the core functionalities of Lucene. Those func-
tionalities are provided by Lucene through a powerful API. We use Lucene 4.0
as it was the most stable version and o�ered plenty of documentation, which
was necessary to implement the RIS requirements.13 In the next step, we
downloaded the Integrated Development Environment (IDE) Eclipse Luna
(Version 4.4).14 Eclipse is a programming environment, primary used for
developing Java applications.

We describe the implementation of the RIS requirements in section 4.3.
Understanding the implementation of the requirements, requires a knowl-
edge about the core architecture of Lucene. We describe the architecture of
Lucene through an example covering the indexing of documents and the re-
trieval of information from the index. Figure 12 illustrates this architecture.
The retrieval of information is divided into the indexing and the searching
process. Below we describe those 2 parts and provide the code for a simple
application in the appendix. The indexing is described in appendix B.1 and
the searching in appendix B.2.

The indexing process starts with extracting the relevant data from di�erent
sources and �le formats e.g. PDF �les, relational databases. Since, Lucene
is a full-text search engine, the data is mainly textual content. However, it

12http://jakarta.apache.org/
13http://archive.apache.org/dist/lucene/java/4.0.0/
14https://eclipse.org/downloads/

http://jakarta.apache.org/
http://archive.apache.org/dist/lucene/java/4.0.0/
https://eclipse.org/downloads/

Evaluation of Search Engines 45

Query

Data

Ranking

Analyzer
Index

Figure 12: Lucene Architecture

is also possible to add metadata that describes the initial data. In RIS such
metadata is release data of a law, norms, paragraphs. The data is then sent
to the analyzer, which is responsible for preparing the data such that it can
be indexed. The choice of the analyzer very much in�uences the indexing of
data. The analyzer transforms the incoming data into a stream of tokens, see
2.1. A token stream is composed of the tokenizer and the token �lter. The
tokenizer creates the tokens out of the incoming data based on pre-de�ned
rules and patterns e.g. the WhiteSpaceTokenizer creates tokens based on the
white space between the incoming text.15 The tokenizer is followed by the
token �lter, which applies additional rules on the tokens e.g. the StopFilter
removes all stop words of the token stream.16 Lucene provides a wide range
of analyzers that are appropriate for di�erent use cases e.g. the GermanAn-
alyzer for German texts, the StandardAnalyzer for English content.17 The
GermanAnalyzer is optimized for the German language. It integrates Ger-
man stopwords and a German stemming �lter.18 However, the analyzers of
Lucene can be customized if non of the standard ones is applicable for the
respective application [20].

In the next step, the tokens of each token stream are added to Lucene doc-
uments. These documents are a collection of �elds. The �elds are used to

15https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/analysis/

Tokenizer.html
16https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/analysis/

TokenFilter.html
17https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/analysis/

Analyzer.html
18https://lucene.apache.org/core/4_0_0/analyzers-common/org/apache/

lucene/analysis/de/GermanAnalyzer.html

https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/analysis/Tokenizer.html
https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/analysis/Tokenizer.html
https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/analysis/TokenFilter.html
https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/analysis/TokenFilter.html
https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/analysis/Analyzer.html
https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/analysis/Analyzer.html
https://lucene.apache.org/core/4_0_0/analyzers-common/org/apache/lucene/analysis/de/GermanAnalyzer.html
https://lucene.apache.org/core/4_0_0/analyzers-common/org/apache/lucene/analysis/de/GermanAnalyzer.html

Evaluation of Search Engines 46

add further information to a Lucene document. In case of a legal text in
RIS, the text itself and additional metadata can be stored in separate �elds
in the Lucene document. Figure 13 represents Lucene documents, based on
the example documents in section 2. In this example each Lucene docu-
ment consist of the legal text, the date and the paragraph. The original RIS
documents, by contrast, contain more metadata information. This example
is intended to illustrate the logical structure of a Lucene document and its
�elds. Each �eld in Lucene is composed of 3 parts: name, type and value.19

Lucene o�ers di�erent types of �elds depending on the underlying data e.g.
IntField, StringField. Values may be text (String), binary (byte[]), or nu-
meric. Additionally, the following information can be speci�ed: Analyzer,
Storage, TermVector. The information can be used to determine whether to
use an Analyzer, store the values of the �elds, or create a vectors space for
the terms in the �eld [20].

D1

Text:Das Verfahren
über […]
Date:22-01-2015
Paragraph:ABGB §5

D2

Text:Das gemäß §20
RL-BA […]
Date:31-01-2015
Paragraph:ABGB §6

D3

Text:Das gemäß §28
RAO […]
Date:10-04-2015
Paragraph:ABGB §7

Figure 13: Lucene Document

The last step of the indexing process deals with creating and storing the
index. Lucene uses an inverted index that can be stored either on disk or in
memory. Whereas, the storage on disk is more appropriate for larger indexes,
in memory storage is applicable for smaller indexes. There are two main rea-
sons for this. On the one hand memory is more expensive than disk space.
On the other hand, memory can be accessed much faster than a disk. How-
ever, Lucene supports possibility that exploit the advantages of both storage
solutions. Therefore, Lucene can automatically load multiple documents in
memory, before writing them to disk. Additionally, Lucene provides options

19https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/document/

Field.html

https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/document/Field.html
https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/document/Field.html

Evaluation of Search Engines 47

File Description
Term Dictionary Stores the terms in a alphabetical order with the

respective pointers to other �les (frequency, posi-
tion). Refer to section 2.1 for more information

Term Frequency Contains the frequency of each term in the respec-
tive document

Term Position Contains the list of positions of each term in each
document

Stored Fields This �le contains a mapping of the document id's
to the �eld where the data is actually stored

Term Vectors This is an optional �le that contains additional
information about a �eld in Lucene e.g. position,
o�set, frequency.

Norms Norms represent factors, which are relevant for
scoring

Deleted Docu-
ments

This �le stores markers for all documents that were
deleted. The standard con�guration of Lucene
deletes documents from disk in case of index up-
dates, which re-merges the documents

Table 10: Lucene Document

that allow to further con�gure the indexing and storing process in order to
improve the performance e.g. increase the number of documents added in
memory. [20].

The index is the core of every search engine. Lucene uses the concepts of
an inverted index, as explained in section 2.1. It divides an index into sub
indexes, which are described as segments. Each of those segments stores var-
ious �les, see table 10.20 The segments are built for the purpose of handling
the indexing and updating of documents in an e�ective way. Since, the seg-
ments are smaller than the entire index, resources and operations of machine
that is responsible for creating and storing the index can be balanced in an
optimal manner.

The second part of the Lucene architecture deals with the search for infor-
mation. The user formulates and executes a query. Lucene makes it possible
to create own queries with its API e.g. BooleanQuery, TermQuery, Phrase-
Query, RangeQuery. Those queries are restricted to a speci�c type of search.

20http://lucidworks.com/blog/2009/03/18/exploring-lucenes-indexing-code-

part-2/

 http://lucidworks.com/blog/2009/03/18/exploring-lucenes-indexing-code-part-2/
 http://lucidworks.com/blog/2009/03/18/exploring-lucenes-indexing-code-part-2/

Evaluation of Search Engines 48

However, Lucene also provides a query language through the QueryParser.
This query parser reads a string and maps it to a Lucene query.21 The query
parser supports all the described search features from section 2.2. The index
is used to retrieve the results, which match to the user query. In section
2.3, we describe common methods that rank the retrieved results. Lucene
uses the Term Frequency Inverse Document Frequency (TFIDF) Similarity
to compute a score for each retrieved document.22 TFIDF combines Boolean
Models with Vector Space Models.

4.2.2 Mindbreeze

Mindbreeze is an Austrian Search Appliance vendor, which specialized on
making di�erent kind of data sources in enterprises retrievable. Mindbreeze
delivers its product InSpire in form of an appliance, which includes hard-
ware and software. The hardware is optimized on the amount of documents
indexed. Mindbreeze InSpire is able to analyse structured as well as unstruc-
tured data. Apart from various full-text search features, Mindbreeze InSpire
enables de�ning access rights and recognizing the subject of each document.
The latter can be used for classifying information and describing semantic
correlations between documents [29].

Mindbreeze InSpire o�ers a service-oriented architecture for indexing and
searching. Figure 14 shows the core architecture of Mindbreeze. The In-
Spire Search Appliance has multiple connectors to a wide range of di�erent
data sources. The index is created by loading the data to the Index Service.
In case of updates of the index, the Crawler Service of the InSpire Search
Appliance is used. The Crawler Service allows to search di�erent systems
if content is changed or has to be added to the index. There are two pos-
sibilities how the Crawler Service detects changes in the source system. A
source system can be any kind of system e.g. database, content management
system, which stores the relevant data. One way is that the Crawler Service
actively recognizes changes, which refers to the pull principle. If changes in
the source system are detected, the Crawler Services forwards those changes
to the Index Service, which then updates the index. The other possibility
is that the source system automatically identi�es the changes and forwards
this information to the Crawler Service. This concept is referred to the push
principle. The Filter Service comes after the Crawler Service and is used to

21https://lucene.apache.org/core/4_0_0/queryparser/org/apache/lucene/

queryparser/classic/package-summary.html#package_description
22https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/search/

similarities/TFIDFSimilarity.html

https://lucene.apache.org/core/4_0_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description
https://lucene.apache.org/core/4_0_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description
https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
https://lucene.apache.org/core/4_0_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

Evaluation of Search Engines 49

extract the textual content from the di�erent data sources e.g. PDF doc-
uments, HTML sites. The search for information is the second part of the
Mindbreeze architecture. The Query Service is used to handle the retrieval
of information [30].

IndexIndex

Index Service
Crawler
Service

Filter Service

Data

Query Service

Figure 14: Mindbreeze Architecture

4.3 Implementation of Requirements

The Federal Chancellery of Austria provided us with a complete database
dump of the RIS system. We restored the entire dump in Microsoft SQL
Server 2014 using the SQL Server Management Studio. The backup �les of
the 26 RIS databases had a size of 300 GB. After we restored the back �le,
the consumed disk space increased to 900 GB. Thus, the full restored �les
including also the SQL Server full-text index were 3 times higher than the
back up �les. We de�ned together with the Federal Chancellery of Austria
the databases, which are the basis for the implementation and evaluation of
the RIS requirements, see table 9. We decided in favour of the 3 databases
"Bundesnormen", "Justiz" and "Landesrecht Niederösterreich". In a partic-
ular system, we compare Microsoft SQL Server (current RIS solution) with
Lucene and Mindbreeze, see table 11. Below are the terms we used in the
comparison.

• Yes: It means that the requirement are implemented out of the box,
with the on-board functions of the respective system.

• No: This means that it is not possible to implement the requirement
with the respective system.

Evaluation of Search Engines 50

• Custom: We used this term to determine that the requirement could
be implemented, but required some additional programming or con�g-
uration e�ort.

In the following part of this section we describe the procedure of indexing
the 3 databases in Lucene and Mindbreeze.

Lucene: We used Microsoft SQL Server 2014 to restore the backup �les
the Federal Chancellery of Austria provided us with. We restored the �les
on the Hard Disk (HDD), connected to our local machine through USB 2.0,
see table 12 for more details on the hardware. We established a connection
to the Microsoft SQL Server for accessing and loading the data. We used a
Java Database Connectivity (JDBC) connection, which is a standard for con-
necting the Java programming language to plenty of databases.23 In the next
step, we extracted the relevant data from the 3 databases with SQL scripts
and indexed the data. We created an index for each database and stored
them on the HDD. The code is made available in appendix B.3, where we
index the database "Bundesnormen". The indexing of the other databases
follows the same schema, but requires the adaptation of the database connec-
tion, the SQL script and Lucene �elds accordingly. Since not all requirements
could be met with the on board features of Lucene e.g. canonisation, seg-
mentation, we created a custom analyzer, see appendix B.11. This analyzer
is tailored to the German language and the RIS requirements. The index
was then used for retrieving information. We set the default �eld in Lucene
to "Suchworte", which is a view on all relevant metadata (text, date, etc.)
of a RIS document.

Mindbreeze: Mindbreeze provided us with one of their InSpire Appli-
ances. We restored the three databases "Bundesnormen", "Justiz" and "Lan-
desrecht Niederösterreich" with the Microsoft SQL Server 2014 on a virtual
machine running on a Mindbreeze server. For extracting and loading the
data from the database, we used the tool Talend Open Studio. This tool
is an open source product, which allows to Extract, Transform and Load
(ETL) data from various sources through a graphical user interface.24 We
created 3 Talend jobs, one for each of the 3 databases. Figure 15 illustrates
the Talend job for the database "Bundesnormen". The other jobs follow the
same schema, but di�er in terms of databases and mappings.

23http://www.oracle.com/technetwork/java/javase/jdbc/index.html
24https://www.talend.com/products/talend-open-studio

http://www.oracle.com/technetwork/java/javase/jdbc/index.html
https://www.talend.com/products/talend-open-studio

Evaluation of Search Engines 51

ID Requirement SQL Server Lucene Mindbreeze

1.1 Wildcard: Right yes yes yes
1.2 Wildcard: Middle custom yes custom
1.3 Wildcard: Left custom custom yes
1.4 Wildcard: Multiple custom yes yes
1.5 Wildcard: Precise custom yes custom
2.0 Phrase Search yes yes yes
3.0 Near Search yes yes yes
4.0 Boolean Search yes yes yes
5.0 Combined Search yes yes yes
6.0 Special Characters custom yes yes
7.0 Numbers no yes yes
8.0 Non-Breaking Space no yes yes
9.0 Metadata and Full-text

Search
no yes yes

10.0 Stemming yes yes yes
11.0 Validation of Queries no yes yes
12.1 Current Search Functions:

Word Delimiter
yes yes yes

12.2 Current Search Functions:
Di�erent Spelling

custom custom custom

13.0 Scalability yes yes yes
14.0 Performance yes yes yes
15.0 Updates yes yes yes
16.0 Auto Correction no yes yes
17.0 Range Search custom yes custom
18.0 Group of Words custom custom yes
19.0 Group of Words including

Stop Words
custom custom yes

20.0 Faceted Search no yes yes
21.0 Segmentation custom custom yes
22.0 Canonisation of Group of

Words
custom custom yes

23.0 Synonyms yes yes yes
24.0 Global Search yes yes yes

Table 11: Implemented Requirements

Evaluation of Search Engines 52

Speci�cation Details

Central Processing Unit (CPU) 3.2 GHz Dual Core
Random Access Memory (RAM) 16 GB
Operating System Windows 7, 64 Bit
Hard Disk (HDD) 4 TB

Table 12: Lucene Hardware Details

Figure 15: ETL Talend Job

Each Talend job starts with a connection to the respective database. In
the next step, we applied the same SQL scripts we used for Lucene to ex-
tract the relevant RIS attributes from the SQL Server. We mapped those
attributes to the Mindbreeze InSpire framework. This framework includes
the mandatory attributes: key, title, content, extensions and categoryClass.
Those attributes had to be �lled with data. Thus, we assigned the relevant
RIS attributes accordingly and created additional attributes for the remain-
ing RIS attributes. If an assignment to a mandatory Mindbreeze attribute
did not make sense, we just entered a string describing this attribute. Table
13 re�ects parts of the mapping.

Since we added further attributes in the Talend jobs to the Mindbreeze
framework, we had to add them to the Index Service as well. This was
done by adding those additional attributes e.g. "Unterzeichnungsdatum",
to the categoryDescriptor �le. An extract of the �le is described in listing
8. The last step included the con�guration of the index according to the
RIS requirements. The Mindbreeze InSpire Appliance o�ers a graphical web
interface, see �gure 16, for con�guring and starting the indexing. The index
was then used for retrieving information. If no �eld is explicitly set by the
user in a query, the Mindbreeze searches by default over all �elds.

Evaluation of Search Engines 53

RIS Mindbreeze
ID key
Kurztitel title
Langtitel title
"EXT" extension
"RIS" categoryClass
Paragraphnummer Paragraphnummer
Unterzeichnungsdatum Unterzeichnungsdatum
... ...

Table 13: Mindbreeze Mapping

Listing 8: Category Descriptor

1 <category>

2 <metadatum aggregatable="true" id="Unterzeichnungsdatum"

visible="true" selectable="true">

3 <name xml:lang="de">Unterzeichnungsdatum</name>

4 </metadatum>

5 </category>

The previous part of this section describes the steps for Lucene and Mind-
breeze that were necessary to index the 3 databases. The following part
re�ects the implementation of the RIS requirements, see table 11, in more
detail.

[1.1] Wildcard: Right

• Description: Right wildcard is a place holder at the end of a term that
allows to search for multiple variations.

• Example: The query "Gericht*" would also retrieve results like "Gerichts",
"Gerichtshof", etc.

• SQL Server: The right wildcard query is supported out of the box.
The predicates CONTAINS and CONTAINSTABLE in combination
with the "*" character can be used to perform this wildcard search.
Query: CONTAINS(column, 'Gericht*')

• Lucene: The right wildcard is supported out of the box and indicted
through the "*" character. The WildcardQuery or the QueryParser

Evaluation of Search Engines 54

Figure 16: Mindbreeze Web Interface

can be used to perform this wildcard search.
Query: "Gericht*"

• Mindbreeze: The right wildcard is supported out of the box. The stan-
dard con�guration applies always a right wildcard search by default.
However, the "*" character can be used as well.
Query: "Gericht*"

[1.2] Wildcard: Middle

• Description: Middle wildcard is a place holder in the middle of a term
that allows to search for multiple variations.

• Example: The query "Rad*streifen" would also retrieve results like
"Radbegegnungsstreifen", "Radfahrstreifen", etc.

• SQL Server: The middle wildcard search is not supported by the full-
text services of the SQL Server. However, it could be solved with a

Evaluation of Search Engines 55

LIKE query, which causes performance issues on larger texts.
Query: LIKE 'Rad%streifen'

• Lucene: The middle wildcard is supported out of the box and indicted
through the "*" character. The WildcardQuery or the QueryParser
can be used to perform this wildcard search.
Query: "Rad*streifen"

• Mindbreeze: Being able to perform a middle wildcard search requires
the implementation of a custom query transformation plugin, see ap-
pendix C.1. 37-41 re�ect the respective parts in the code. We applied
the middle wildcard functionality on the metadata title. If the query
parser recognizes the "*" character, it will replace it by the regular ex-
pression ".*". This regular expression indicates a wildcard search and
is recognized by the Query Service.
Query: "Rad*streifen"

[1.3] Wildcard: Left

• Description: Left wildcard is a place holder at the beginning of a term
that allows to search for multiple variations.

• Example: The query "*walter" would also retrieve results like "Sach-
walter", etc.

• SQL Server: The left wildcard search is not supported by the full-text
services of the SQL Server. However, there are several possibilities
to provide this feature. One option would be to perform a full table
scan through a like query. This drawback of this option is the lack of
performance. The other option would be to store the text reversed in
a di�erent �eld or in a meterialised view and create a full-text index
on the column. In case of a left wildcard query, the query is reversed
and carried out on the reversed column.
Query: CONTAINS(revColumn, ' "retlaw*" ')

• Lucene: The left wildcard is deactivated by default. It has to be ex-
plicitly allowed in the WildcardQuery or the QueryParser, since this
wildcard search is not performant. Lucene reverses the terms in the
dictionary at query time, which is resource and time consuming. The
lack of performance can be solved with a custom implementation, which

Evaluation of Search Engines 56

we took from GitHub.25 This �lter creates a reversed token from ev-
ery incoming token. It takes an incoming token, reverses this token
and adds the "#" character at the end of the token. This new token
is additionally stored at the current position of the original incoming
token. This special character is then used to identify reversed tokens
when performing a left wildcard search. On the one hand this �lter
doubles the amount of tokens in the index, but on the other hand it
makes left wildcard queries more e�cient. The better performance is
achieved due to the fact that the cost intensive reversal of terms at
query time isn't necessary any more.
Query: "*walter"

• Mindbreeze: The left wildcard is supported out of the box. The stan-
dard con�guration applies always a left wildcard search by default.
However, the "*" character can be used as well.
Query: "*walter"

[1.4] Wildcard: Multiple

• Description: Multiple wildcards represent 2 or more placeholders within
a term.

• Example: The query "Arbeit*schutz*" would also retrieve results like
"Arbeitsschutz", "Arbeitnehmerschutzvorkehrung", etc.

• SQL Server: The multiple wildcard is not supported by the full-text
services of the SQL Server. However, it could be solved with a LIKE
query, which causes performance issues on larger texts.
Query: LIKE 'Arbeit%schutz%'

• Lucene: The middle wildcard is supported out of the box and indicted
through the "*" character. The WildcardQuery or the QueryParser
can be used to perform this wildcard search.
Query: "Arbeit*schutz*"

• Mindbreeze: Being able to perform a middle wildcard search requires
the implementation of a custom query transformation plugin, see ap-
pendix C.1. 37-41 re�ect the respective parts in the code. We applied
the middle wildcard functionality on the metadata title. If the query
parser recognizes the "*" character, it will be replaced by the regular

25https://github.com/thihy/lucene/blob/master/solr/core/src/java/org/

apache/solr/analysis/ReversedWildcardFilter.java

https://github.com/thihy/lucene/blob/master/solr/core/src/java/org/apache/solr/analysis/ReversedWildcardFilter.java
https://github.com/thihy/lucene/blob/master/solr/core/src/java/org/apache/solr/analysis/ReversedWildcardFilter.java

Evaluation of Search Engines 57

expression ".*". This regular expression indicates a wildcard search
and is recognized by the Query Service.
Query: "Arbeit*schutz*"

[1.5] Wildcard: Precise

• Description: Precise wildcards are 1 or more placeholders that deter-
mine the amount of characters to be replaced.

• Example: The query "Bund__" would retrieve results like "Bundes",
but NOT "Bundesrecht".

• SQL Server: The multiple wildcard is not supported by the full-text
services of the SQL Server. However, it could be solved with a LIKE
query, which causes performance issues on larger texts.
Query: LIKE 'Bund__'

• Lucene: The precise wildcard is supported out of the box and indicted
through the "?" character. The WildcardQuery or the QueryParser
can be used to perform this wildcard search.
Query: "Bund??"

• Mindbreeze: Being able to perform a precise wildcard search requires
the implementation of a custom query transformation plugin, see ap-
pendix C.1. 37-41 re�ect the respective parts in the code. We applied
the precise wildcard functionality on the metadata title. If the query
parser recognizes the "_" character, it will be replaced by the regular
expression ".". This regular expression indicates a single placeholders
and is recognized by the Query Service.
Query: "Bund__"

[2.0] Phrase Search:

• Description: The phrase search is used to search for multiple terms,
where the order of the terms matters.

• Example: The query "Arbeitnehmer in Wien" would only retrieve re-
sults where the terms "Arbeitnehmer", "in", "Wien" occur consecu-
tively.

• SQL Server: Phrase queries can be formulated with the full-text search
predicates of the SQL Server, see section 3.3.
Query: CONTAINS(column, ' "Arbeitnehmer in Wien" ')

Evaluation of Search Engines 58

• Lucene: Phrase search is supported out of the box. Queries can be ei-
ther formulated with the QueryParser through quotes at the beginning
and at the end of the phrase, or explicitly through the PhraseQuery.
Query: "Arbeitnehmer in Wien"

• Mindbreeze: Phrase search is supported out of the box. Queries can
be formulated through quotes at the beginning and at the end of the
phrase.
Query: "Arbeitnehmer in Wien"

[3.0] Near Search:

• Description: The near search looks for terms or phrases that are close
to each other.

• Example: The query "Arbeitnehmer NEAR Wien" would only retrieve
results if the term "Arbeitnehmer" is close to the term "Wien".

• SQL Server: Near queries can be formulated with the CONTAINS and
CONTAINSTABLE full-text predicates, see section 3.3. The distance
between terms can't be speci�ed in SQL Server 2008 R2. However,
newer versions of the SQL Server allow the speci�cation of the distance.
Query: CONTAINS(column, 'Arbeitnehmer NEAR Wien')

• Lucene: Near search is supported out of the box. Queries can be either
formulated with the QueryParser, or explicitly through the SpanNear-
Query. The tilde character " " indicates a near search in the Query-
Parser. Furthermore, the distance between terms and phrases can be
set.
Query: "Arbeitnehmer Wien" 10

• Mindbreeze: Near search is supported out of the box. The distance
between terms and phrases can be set.
Query: Arbeitnehmer NEAR Wien

[4.0] Boolean Search:

• Description: The boolean search is composed of the boolean operators
AND, OR, NOT.

• Example: The query "Bund ANDGericht" would only retrieve results if
the term "Bund" and the term "Gericht" occur in the same document.

Evaluation of Search Engines 59

• SQL Server: Boolean queries can be formulated with the CONTAINS
and CONTAINSTABLE full-text predicates, see section 3.3. Further-
more, combinations of boolean operators can be speci�ed to generate
nested queries.
Query: CONTAINS(column, 'Bund AND Gericht')

• Lucene: Boolean search is supported out of the box. Queries can
be either formulated with the QueryParser, or explicitly through the
BooleanQuery. Any combinations of boolean operators are possible.
Query: Bund AND Gericht

• Mindbreeze: Boolean search is supported out of the box. Combinations
of boolean operators can be made.
Query: Bund AND Gericht

[5.0] Combined Search:

• Description: Combined search de�nes the combination of the require-
ments 1-4 in a query.

• Example: The query "Fahr* NEAR Rad*" would retrieve results where
any terms starting with "Fahr" are close to any terms starting with
"Rad".

• SQL Server: Combinations of the above search features can be made.
But not all requirements are supported by the full-text features of the
SQL Server. Thus, performance issues may arise when combining spe-
cial queries, especially in connection with the LIKE predicate.
Query: CONTAINS(column, ' "Fahr*" NEAR "Rad*" ')

• Lucene: All combinations of the above requirements can be made with
the full-text search functions.
Query: "Fahr* NEAR Rad*"

• Mindbreeze: All combinations of the above requirements can be made
with the full-text search functions.
Query: "Fahr* NEAR Rad*"

[6.0] Special Characters:

• Description: Legal documents have various special characters included
e.g. "�", "/", "\". Those characters are important for the retrieval of
legal content.

Evaluation of Search Engines 60

• Example: The paragraph "�" character has to be indexed.

• SQL Server: The "�" character is not indexed by default. RIS uses
a workaround to solve this problem. It converts the "�" character
to a speci�c string e.g. "Paragraph", which is then indexed by the
SQL Server. When the user applies the "�" character in his query,
this character is converted to the string "Paragraph". This approach
enables the search for the paragraph with the "�" character.

• Lucene: The "�" character is indexed by default. Lucene provides a
description of the characteristics of every analyzer, tokenizer and �l-
ter. The description can be used to identify the text segmentation
and �ltering rules. The StandardTokenizer uses unicode text segmen-
tation rules.26 However, if special characters need to be treated in a
way that is not compliant to the standard rules, Lucene enables to
fully customize the token stream through various tokenizers and �lters
e.g. WhitespaceTokenizer (creates tokens based on the whitespace),
WordDelimiterFilter (custom splitting rules can be created). If special
characters are used on query side, they can be escaped if necessary.
The query parser of Lucene uses the following special characters.
Escaping Special Characters: + - && || ! () { } [] ^ " ~ * ? : \

• Mindbreeze: Mindbreeze uses the standard unicode rules for word split-
ting. Thus, the "�" character is indexed and can be searched for.

[7.0] Numbers:

• Description: Some metadata �elds e.g. "Gliederungszahl" in the database
"Landesrecht Niederösterreich" contain numbers with leading zeros.
Those leading zeros are essential for the retrieval of RIS documents.

• Example: A number with leading zeros would be "0000123".

• SQL Server: The leading zeros are automatically cut o� by the SQL
Server. Thus, the number "0000123" would be transformed to "123".

• Lucene: Leading zeros are not cut o� by Lucene. We developed a
little test case to prove this requirement. Listing 9 shows an HTML
document, which we indexed. We used Apache Tika to extract the
content between the HTML tags and indexed it with Lucene. Apache
Tika is an open-source tool under the Apache Software License, which

26http://unicode.org/reports/tr29/

http://unicode.org/reports/tr29/

Evaluation of Search Engines 61

allows to extract metadata and text from many di�erent �le types [14].
In the next step, we searched in the index for "0000123" and retrieved
the document.

• Mindbreeze: Tokenizer pro�les can be set in the con�guration process,
which allow to de�ne the type of a metadata e.g. string, numeric value.
We set the tokenizer pro�le to nonnumeric and indexed the document
from listing 9. In the next step, we searched in the index for "0000123"
and retrieved the document.

Listing 9: Test Document

1 <!DOCTYPE html>

2 <html>

3 <body>

4 <p>Leading zeros 00001234</p>

5 <p>Gericht wurde vertagt</p>

6 </body>

7 </html>

[8.0] Non-Breaking Space:

• Description: Non-breaking spaces are special characters that prevent
automatic line breaks at the position they are used. Those non-breaking
spaces, however, should be recognized as breaking spaces by the search
system.

• Example: In HTML non-breaking spaces are encodes with " ".
A phrase in a document might contain "Gericht wurde vertagt",
such that "Gericht" and "wurde" occur in the same line.

• SQL Server: Non-breaking spaces are not treated like breaking spaces.
Thus, based on the example above, the query "Gericht wurde" would
retrieve no results, since both terms are indexed as one term "Gerichtwurde"

• Lucene: Non-breaking spaces are treated like breaking spaces. We
indexed the HTML document from listing 9 and queries for "�rst para-
graph". The query retrieved the relevant document.

• Mindbreeze: Non-breaking spaces are treated like breaking spaces. We
indexed the document from listing 9 and searched for "�rst paragraph".
We were able to retrieve the respective document.

Evaluation of Search Engines 62

[9.0] Metadata and Full-text Search:

• Description: A legal RIS document is composed of the textual content
and various metadata describing the document e.g. publication date,
paragraph number. The search system should allow to apply a full-text
search on all metadata �elds.

• Example: The metadata of a RIS document consists of di�erent types
e.g. "Suchworte" (string), "Paragraphnummer" (int), "Norm" (string).
The full-text search should be available over all those metadata �elds.

• SQL Server: The current search system does not provide a full-text
search over all metadata �elds of a RIS document. The reason for this
is that the full-text search features of the SQL Server do not meet all
the search functionalities RIS is currently using. Thus, full-text search
is partly combined with standard SQL features e.g. LIKE, BETWEEN
for range queries.

• Lucene: A full-text index can be created on all RIS metadata �elds,
since Lucene supports various types of �elds e.g. StringField, IntField.

• Mindbreeze: A full-text index can be created on all RIS metadata �elds.

[10.0] Stemming:

• Description: Stemming refers to the process of reducing words to their
word stem.

• Example: The term "laufen" would be reduced to "lauf" depending on
the stemming algorithm,.

• SQL Server: Stemming can be activated in the SQL Server.27 A Ger-
man stemming algorithm is available.

• Lucene: Depending on the choice of the Analyzer di�erent stemmers
for various languages exist. The GermanAnalyzer contains a stemming
algorithm optimized for the German language. Lucene integrated dif-
ferent stemming algorithms in their previous versions. Lucene 4.0, the
version we used, includes a light German stemmer from the Universite
de Neuchatel.28

27https://msdn.microsoft.com/en-us/library/ms142509%28v=sql.105%29.aspx
28http://members.unine.ch/jacques.savoy/clef/germanStemmer.txt

https://msdn.microsoft.com/en-us/library/ms142509%28v=sql.105%29.aspx
http://members.unine.ch/jacques.savoy/clef/germanStemmer.txt

Evaluation of Search Engines 63

• Mindbreeze: The stemming feature can be added through the Stem-
merTransformer plugin. A basic stemming algorithm is integrated in
the plugin. Moreover, Mindbreeze o�ers additional dictionaries with
vocabularies for the most common languages e.g. German, English.

[11.0] Validation of Queries:

• Description: The search system should be able to validate queries ac-
cording to their syntactical correctness before they are executed.

• Example: The query "(Gericht AND Bund" would return an error,
since the closing bracket is missing.

• SQL Server: Query validations are not supported by the SQL Server.
However, RIS uses a custom approach that sends an initial query to
the server, without retrieving any results. If the query is valid, results
are retrieved.

• Lucene: Validation of queries can be added with Regular Expressions.
Furthermore, Lucene throws automatic exceptions when a non valid
query was detected by the query parser.

• Mindbreeze: Queries can be validated using regular expressions. In con-
trast to Lucene, Mindbreeze integrates less validation services. This is
done on purpose, because Mindbreeze wants to o�er the user immediate
results even at the risk of allowing a syntactically non valid query.

[12.1] Current Search Functions: Word Delimiter

• Description: The search system is not supposed to split words on
slashes.

• Example: The phrase "ABG/�2" should be indexed as one term, and
not split on the "/" character.

• SQL Server: A slash is not a word breaker in SQL Server.

• Lucene: The unicode text segmentation rules are used in Lucene. Those
rules do not use the "/" character to split words.29

• Mindbreeze: A slash is not a word breaker in Mindbreeze, because the
unicode rules are applied.

29http://unicode.org/reports/tr29/#Default_Word_Boundaries

http://unicode.org/reports/tr29/#Default_Word_Boundaries

Evaluation of Search Engines 64

[12.2] Current Search Functions: Di�erent Spelling

• Description: The search system should allow di�erent spellings of a
search term.

• Example: The query Paragraph:"1a" and the query Paragraph:"1 a"
should retrieve equivalent results.

• SQL Server: RIS solved this requirement through a custom approach.

• Lucene: We created a custom approach to solve this requirement in
Lucene. Therefore, we created a new �eld, which merges the �elds
"Paragraphnummer" and "Paragraphbuchstabe". In the next step, we
cut the whitespace, if existing, and executed the query. This solution
allows to retrieve both spellings, since it transforms "1 a" to "1a".

• Mindbreeze: We created a custom approach, similar to the Lucene
approach, to solve this requirement. We merged the �elds "Paragraph-
nummer" and "Paragraphbuchstabe" to one �eld in the Talend job. In
the next step, we implemented an additional solution in the QueryEx-
pansion plugin, see appendix C.1. Part 28-38 describes the relevant
code, which cuts the whitespace, if existing, and forwards the query to
the Query Service.

[13.0] Scalability:

• Description: The search system has to be scalable when creating and
updating index with a large amount of data.

• SQL Server: The current search system has a scalable architecture, see
section 3.2.

• Lucene: We indexed the database "Bundesnormen" and recorded the
times after indexing 10,000 documents. Figure 17 illustrates those
times. We indexed 346,000 documents, which took around 8 minutes
(470 seconds). The amount of documents is described on the x-axis,
the times are indicated on the y-axis. On average Lucene indexed 725
documents per second. The �gure shows an almost linear curve, which
means that Lucene scales well with big amount of documents.

• Mindbreeze: The InSpire Appliance is a scalable solution. Firstly, the
hardware is optimized on the amount of documents being indexed.

Evaluation of Search Engines 65

Secondly, further Appliances can be added, which can be combined to
a cluster. This cluster distributes the index over multiple Appliances,
which can be used to parallelize the creation or update of the index.

[14.0] Performance:

0

50

100

150

200

250

300

350

400

450

500

0 50000 100000 150000 200000 250000 300000 340000

Se
co

n
d

s

Documents

Indexing Times

Figure 17: Indexing Times

• Description: Results should be retrieved under 100 milliseconds.

• SQL Server: The current search system is e�cient, because it quickly
retrieves the documents matching to a query.

• Lucene: The requirement is met by Lucene. An average query took
around 91 milliseconds. For more information, see section 4.4.

• Mindbreeze: The requirement is met by Mindbreeze. An average query
took around 11 milliseconds. For more information, see section 4.4.

Evaluation of Search Engines 66

[15.0] Updates:

• Description: Updates on the index should be possible with the pull or
the push principle. In the pull principle, the search system automati-
cally detects the documents that were added, deleted, or changed. By
contrast, the push principle refers to an approach where the source sys-
tem submits the search system the documents that have to be added,
deleted, or changed.

• SQL Server: Updates in SQL Server are performed through the UP-
DATE predicate. The index is replicated on 2 separate machines.
When updates are carried out, the �rst machine is set o�-line and
the index updates. When the update on the �rst machine is �nished,
the machine is set on-line and the same process is carried out on the
second machine.

• Lucene: The index can be updated through the push and the pull
principle. Lucene enables updates on the entire index as well as updates
on single documents. The update of a speci�c document in the Lucene
index is described in appendix B.5.

• Mindbreeze: Updates on the index are carried out through the Crawler
Service. Mindbreeze supports updates with the pull or the push prin-
ciple. Moreover, the entire index but also single documents can be
updated.

[16.0] Auto Correction:

• Description: Auto corrections refer to the automatic detection of mis-
spelled terms in a query. The search system o�ers the user alternative
suggestions.

• Example: The query for "Gerucht" could produce the suggestion "Did
you mean? Gericht".

• SQL Server: The auto correction is not supported by the SQL Server.

• Lucene: Lucene supports automatic suggestions of corrections. The
basis of those suggestions is a dictionary. This dictionary can be cre-
ated out of the index or added through an additional list of words.
We implemented a dictionary on the �eld "Suchworte" and placed the
code in appendix B.6. Including the suggestions in the search process,

Evaluation of Search Engines 67

requires opening the directory and selecting an appropriate string simi-
larity method. Lucene supports various of those methods. However, we
selected the JaroWinklerDistance, because it is faster and gives better
results than the standard Java string distance method or the Leven-
steinDistance [10].

• Mindbreeze: Mindbreeze o�ers a solution, which displays suggestions
in case of misspelled words. The alternative search terms are based on
internal index statistics and analysis. This feature is called 'Did you
mean?' and can be added as an additional plugin.

[17.0] Range Search:

• Description: The range search describes a search over a speci�c range.
This range can be in a lexicographical or numerical order. Lexicograph-
ical means an alphabetical order of words e.g. "aa", "ab", "ba".

• Example: Range searches are mostly used for dates and paragraphs in
RIS e.g. "�1a TO �3d".

• SQL Server: Range searches are not supported by the full-text search
features of the SQL Server. However, they can be constructed with
SQL range queries.
Query: column BETWEEN (1 AND 3) AND column BETWEEN ('a'
AND 'd')

• Lucene: Range queries on the full-text index are supported by Lucene.
Range queries can be constructed through the QueryParser, or explic-
itly through the RangeQuery e.g. NumericRangeQuery, TermRange-
Query. We provide the code for the example in appendix B.4. The
QueryParser could also be used to construct the same range query.
Query: paragraphnummer:"1 TO 3" AND paragraphbuchstabe:"a TO
d"

• Mindbreeze: Range search is supported by Mindbreeze out of the box.
However, in the InSpire Appliance we got access to, only one connector
for range queries was implemented. Since our example required a range
query on two metadata �elds, we had to come up with a workaround.
We solved the requirement by making use of the Crawler Service of the
InSpire Appliance. We modi�ed the SQL script from the ETL job in a
way, which stored the metadata in an XML structure on the server. In

Evaluation of Search Engines 68

the next step, we added the relevant metadata �elds, "paragraphnum-
mer" and "paragraphbuchstabe", to the Crawler Service and indexed
the XML document. The data was extracted from the XML documents
through XPath expressions. XPath is a syntax, which is used to select
elements and attributes in XML documents.30

Query: paragraph:"1a TO 3d"

[18.0] Group of Words:

• Description: RIS has a list of words, which belong together. Thus, they
have to be indexed as one token.

• Example: The term "BGBl" and "I" should be tokenized as "BGBlI".

• SQL Server: RIS uses a custom approach for this requirement.

• Lucene: The requirement is not supported by Lucene out of the box.
However, we managed to solve it using an AutoPhrasingTokenFilter
provided by Lucidworks on GitHub.31 This �lter takes one or multiple
terms as an input. Whenever it detects those terms in a token stream,
it tokenizes them as a single token.

• Mindbreeze: The requirement is supported by Mindbreeze out of the
box. Entity recognition patterns can be used to de�ne pattern rules
in order to tokenize group of words. The following regular expression,
gives an example how such rules can be implemented. In this case
"BGBl" and "I" are grouped together.
Regular expression: Wortgruppe =/BGBl\.\sI/.

[19.0] Group of Words including Stop Words:

• Description: This requirement is similar to the previous requirement.
The di�erence is that the group of words include stop words.

• Example: The term "der" and the term "Bürger" should be tokenized
as "der Bürger".

• SQL Server: RIS uses a custom approach for this requirement.

30http://www.w3schools.com/xsl/xpath_intro.asp
31https://github.com/LucidWorks/auto-phrase-tokenfilter/blob/master/src/

main/java/com/lucidworks/analysis/AutoPhrasingTokenFilter.java

http://www.w3schools.com/xsl/xpath_intro.asp
https://github.com/LucidWorks/auto-phrase-tokenfilter/blob/master/src/main/java/com/lucidworks/analysis/AutoPhrasingTokenFilter.java
https://github.com/LucidWorks/auto-phrase-tokenfilter/blob/master/src/main/java/com/lucidworks/analysis/AutoPhrasingTokenFilter.java

Evaluation of Search Engines 69

• Lucene: The di�erence to the previous requirement is that the �lter
must be set before the removal of stop words. This can be achieved
through a custom analyzer.

• Mindbreeze: As in the previous requirement, we used the entity recog-
nition service. This service can be used, since it is applied before the
removal of stop words. The following regular expression, gives an ex-
ample how such rules can be implemented. In this case "der" and
"Bürger" are grouped together.
Regular expression: Wortgruppe =/der \s Bürger \s/.

[20.0] Faceted Search:

• Description: In a faceted search the amount of matching documents to
a query is measured for pre-de�ned categories.

• Example: A faceted search can be build on speci�c metadata �elds e.g.
date, paragraph.

• SQL Server: The faceted search is not supported by the SQL Server.

• Lucene: The faceted search is supported by Lucene out of the box. Im-
plementing this full-text search feature in Lucene requires the creation
of a taxonomy. A taxonomy is a classi�cation of a content into ordered
categories.32 We build a category on the �eld "Gericht", see appendix
B.7. Any other categories like dates, paragraphs, etc. can be selected
as well.

• Mindbreeze: The faceted search is supported by Mindbreeze out of the
box. Mindbreeze builds a taxonomy on every metadata �eld by default.

[21.0] Segmentation:

• Description: Speci�c �elds in RIS are segmented. This means that
documents are only retrieved, if the query matches to the content of
the segment.

• Example: The �eld "Norm" is such a segmented �eld. As an example
we assume that �eld "Norm" has the following two segments: "KartG
2005 �50" and "OG 2005 �53". The segments are separated through

32http://dictionary.reference.com/browse/taxonomy

http://dictionary.reference.com/browse/taxonomy

Evaluation of Search Engines 70

a new line. If the user searches for "KartG �53" the document would
not be retrieved, since "KartG" and "�53" don't occur in the same
segment.

• SQL Server: RIS uses a custom approach for this requirement.

• Lucene: We solved the segmentation of a �eld in Lucene using a custom
implementation, which can be found in appendix B.9. If a new line
is detected, we virtually expand the distance to the following token.
In combination with a SpanTermQuery, which allows to specify the
distance between two terms or phrases, only terms close to each other
are found. Thus, if the user searches for "KartG �53" he would not
retrieve the document, since the terms are not close to each other.

• Mindbreeze: Segments in a metadata �eld are automatically created in
Mindbreeze when they are loaded in form of an array list. Thus, we
split the segments of the �eld "Norm" on a new line and added those
segments to an array list. The respective �eld is then automatically
handled by Index Service as a segmented �eld.

[22.0] Canonisation of Group of Words:

• Description: RIS uses a list of group of words that have to be indexed
in a canonical form, such that di�erent variations are retrieved.

• Example: The terms "ABGB" and "�1" should be tokenized as "ABGB
�1". Additionally, the terms should be tokenized in a second variation
"�1 ABGB". This allows the user to retrieve di�erent variations of a
group of words.

• SQL Server: RIS uses a custom approach for this requirement.

• Lucene: This requirement is not supported by Lucene out of the box.
Consequently, we implemented a custom solution, see appendix B.10.
If a speci�c term from a canonical list is detected in the token stream,
we store the position of this token and add the token to a temporal
list. If the next token is also identi�ed in the respective list, we add the
token from the temporal list to the current position. This transforms
a speci�c set of terms to a canonical form.

• Mindbreeze: This requirement is supported by Mindbreeze out of the
box. We solved it by de�ning entity recognition patterns based on the
following rules. The regular expressions transform "�1" and "ABGB"

Evaluation of Search Engines 71

to a canonical form, such that di�erent variations are retrieved.
Regular Expression 1: Paragraph=/�\d{1,4}/. Gesetz=/(ABGB)/.
Regular Expression 2: Wort=Gesetz+" "+Paragraph./
Regular Expression 3: Wort2=Paragraph+" "+Gesetz./

[23.0] Synonyms:

• Description: Synonyms are words or phrases that mean the same as
other words or phrases.

• Example: The term "fast" means the same as "rapid".

• SQL Server: A thesaurus, which implies a list of synonyms, can be
integrated in the full-text search.

• Lucene: Synonyms can be added to the index through the SynonymFil-
ter. A synonym map is created and added to the SynonymFilter, which
applies the synonyms on the incoming token stream, see appendix B.8.
In combination with the AutoPhrasingTokenFilter, mappings of entire
phrases can be built.

• Mindbreeze: A list of synonyms can be added with the SynonymTrans-
former plugin.

[24.0] Global Search:

• Description: A global search refers to a search over all databases.

• Example: Search over the databases "Bundesnormen" and "Justiz".

• SQL Server: RIS provides the search over all databases.

• Lucene: We created an index for each of the 3 databases. Queries on
all of those indexes are supported by Lucene. The relevant indexes are
read by di�erent IndexReader, which are assigned to the MultiReader.
The query is executed on the MultiReader.

• Mindbreeze: We created 1 index with Mindbreeze, which was composed
of 3 sub indexes. The DetaIntegration service creates those sub indexes
based on the di�erent data sources being added. In our case, we added
the 3 Talend jobs to this service.

Evaluation of Search Engines 72

Supported SQL Server Lucene Mindbreeze
Yes 12 23 25
Custom 11 6 4
No 6 - -

Table 14: Support of RIS Requirements

4.4 Evaluation

SQL Server, Lucene and Mindbreeze are very di�erent search systems, each
having advantages and disadvantages. The implementation of the require-
ments, see section 4.3, shows that Lucene and Mindbreeze can meet all re-
quirements. By contrast, SQL Server can't meet 6 requirements at all, and
has plenty of custom solutions. Table 14 shows the distribution of the re-
quirements according to our classi�cation.

In this section, we evaluate the search systems in order to get further in-
sights. There are various forms how search systems can be evaluated. The
range from precision and recall methods, see section 2.4, to the consideration
of index size, index updates, query times, etc. We did not use the precision
and recall methods, because no ground troth in terms of a reference data
set was available. So we tried di�erent approaches to evaluate the search
systems, which are described below.

Index Size: First of all, we compared the size of the full-text index, see
table 15. The index sizes is composed of the 3 databases "Bundesnormen",
"Justiz" and "Landesrecht Niederösterreich". Table 15 compares full-text in-
dex size of Lucene and the SQL Server for each database. The size of the SQL
Server full-text index was retrieved through the SQL statement "SELECT
FULLTEXTCATALOGPROPERTY ('LrNoVolltext','IndexSize')", which re-
turns information about various properties of the full-text index e.g. size of
the index (IndexSize), number of indexed items (ItemCount).33 The prop-
erty "IndexSize" displays the logical size of the full-text index, which de�nes
all fragments (parts) that can be queried. Fragments are internal tables that
store the inverted index data.34 However, the fragments of the index that
are not relevant for querying are not considered e.g. marked for deletion
(documents that are marked for deletion, but not yet deleted from disk yet).

33https://msdn.microsoft.com/en-us/library/ms190370%28v=sql.105%29.aspx
34https://technet.microsoft.com/en-us/library/cc280700%28v=sql.105%29.

aspx

https://msdn.microsoft.com/en-us/library/ms190370%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/cc280700%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/cc280700%28v=sql.105%29.aspx

Evaluation of Search Engines 73

Database SQL Server (GB) Lucene (GB)
Bundesnormen 0,773 1,91
Justiz 1,40 3,70
LrNo 0,04 0,12

Table 15: Index Size

The size of the Lucene index was taken from the hard disk. It can be seen
that the full-text index of Lucene is around 2,5 times bigger than the full-
text index of the SQL Server. There are various reasons for this di�erence.
Firstly, Lucene stores additional content, see table 10, which are used for the
e�ective retrieval of information e.g. term vectors. Secondly, the index size
of Lucene covers all segments and �les, which is not the case in the logical
index size of the SQL Server. Moreover, we created a Lucene �eld for each
relevant metadata of the respective RIS database, such that a full-text search
can be applied on all �elds in the search mask of the RIS Web-site. This is
not the case in SQL Server, since the full-text search is limited and therefore
compensated through custom solutions or standard SQL features e.g. range
search, LIKE predicate. The range search in the SQL Server is performed
with the BETWEEN predicate on the respective metadata e.g. paragraph
number. Since the range search on the full-text index is not supported by
the SQL Server, the particular metadata �eld is not indexed. By contrast,
Lucene supports the range search on the full-text index, which is why we
added the �eld to the index. Due to those di�erences, it is not possible to
conclusively compare the size of both indexes. We could not consider the
size of the Mindbreeze index, since the information was not disclosed.

Query Times: In the second approach, we compared the query times of
Lucene and Mindbreeze. The Federal Chancellery of Austria provided us
with queries for the respective RIS requirements, see appendix D.2. We car-
ried out those queries on the Lucene and Mindbreeze index and recorded the
times. We only considered the query times, no network times were taken
into account. The Lucene index was stored on the hard disk of our local
machine, see table 12. By contrast, Mindbreeze provided us with an In-
Spire Appliance, where the information of the technical characteristics was
not disclosed. Each of the queries was executed 3 times. We calculated the
average of those values in order to get a reliable time record for each query.
Table 16 shows min, mean and max statistics in order to give an indication
of the distribution. It can be seen that Mindbreeze performs far better than
Lucene. However, it is important to mention that this is just an indication,

Evaluation of Search Engines 74

Statistics Lucene (ms) Mindbreeze (ms)
Minimum 43 8
Maximum 320 24
Average 91 11

Table 16: Query Times

since di�erent hardware was being used.

Overlap: In our last approach, we compared the overlap of the RIS and
Lucene results through a custom application. The Federal Chancellery of
Austria provided us with log �les from their server. Among other informa-
tion, a log contains the time stamp of the user request and the Uniform
Resource Locator (URL). The URL is an unique identi�er, which is used to
retrieve and publish any resource on the web. This resource can be a HTML
page, an image, etc. It is composed of mandatory and optional parts.35 Table
17 re�ects the structure of a RIS URL, which retrieves results matching to
a query. The URL is composed of the protocol, the domain name, the path
to the result �le on the server and the query. The query itself includes the
respective database, the metadata and the user entries. Due to the fact that
some queries retrieve plenty of results, RIS uses paging in order to reduce the
amount of results displayed on each HTML page. The results are limited to
100 documents per page. "Position=1" at the end of the URL refers to the
�rst result page. Additional pages are added in steps of 100. So the second
page would have the number 101, the third page 201, and so forth. Since
we wanted to compare all results from Lucene and RIS, we had to take the
paging into account in our application. In the next step, we extracted the
queries from the log �les. We developed a script that parses all log �les and
extracts the search terms from the �eld "Suchworte" of the databases "Jus-
tiz" and "Bundesnormen". We were able to extract 108,390 queries from the
"Justiz" database and 65,861 queries from the "Bundesnormen" database.
We stored the queries in 2 separate text �les and executed them on the re-
spective Lucene index. Unfortunately, this approach produced many errors
due to encoding problems and di�erent search syntax. RIS uses a custom
search syntax, which is then translated to the SQL Server syntax e.g. RIS
near query Rad nahe Zug, would be in Lucene "Rad Zug"~. As a conse-
quence, we randomly took a set of 100 queries from the "Justiz" database,
which we translated to the Lucene query parser syntax. At the end, we had

35https://developer.mozilla.org/en-US/Learn/Understanding_URLs

https://developer.mozilla.org/en-US/Learn/Understanding_URLs

Evaluation of Search Engines 75

Type Example
Protocol http:// or https://
Domain www.ris.bka.gv.at/

Path Ergebnis.wke

Query ?Abfrage=Justiz&Gericht=

&Rechtssatznummer=&Rechtssatz=

&Fundstelle=&AenderungenSeit=Undefined&

SucheNachRechtssatz=True&SucheNachText=

False&GZ=&VonDatum=&BisDatum=30.10.2015&

Norm=&ImRisSeit=Undefined&ResultPageSize=

100&Suchworte=&Position=1

Table 17: RIS URL

one �le composed of the original RIS queries and one �le with the equivalent
queries in the Lucene syntax.

Those queries were the input for our application, which compares the re-
sult set of RIS with the result set of Lucene. The application reads in each
of the RIS queries and each of the equivalent Lucene queries. Retrieving the
result set of Lucene, we simply carried out the query on the respective index
stored on our machine. Retrieving the result set of RIS, required to insert the
search term in the metadata "Suchworte" of the RIS URL and request the
result page from the RIS server. Paging was integrated in our application,
because we wanted to retrieve all results. In the next step we parsed through
the result pages with the JSOUP HTML parser and extracted the docu-
ment ID of each RIS document.36 Finally, we we added the RIS and Lucene
results to 2 separate lists and analysed the overlap based on the document ID.

Table 18 illustrates the key �ndings. From the 100 queries, 95 queries re-
trieved results in Lucene, whereas 82 queries retrieved results in RIS. Fur-
thermore, we identi�ed that 78 queries had an overlap of results, which means
that there was at least one document that appeared in both result sets. We
took a closer look at the overlap and identi�ed that in only 7 queries the
results perfectly matched. In the remaining 71 queries, RIS produced in 12
queries more results, whereas Lucene generated in 59 queries more results.
There are various reasons for the di�erence in the result sets. Firstly, RIS
uses plenty of custom implementations e.g. segmentation, group of words,
etc., which results in di�erent indexing characteristics. Secondly, we applied

36http://jsoup.org/

http://
https://
www.ris.bka.gv.at/
Ergebnis.wke
?Abfrage=Justiz&Gericht=&Rechtssatznummer=&Rechtssatz=&Fundstelle=&AenderungenSeit=Undefined&SucheNachRechtssatz=True&SucheNachText=False&GZ=&VonDatum=&BisDatum=30.10.2015&Norm=&ImRisSeit=Undefined &ResultPageSize=100&Suchworte=&Position=1
?Abfrage=Justiz&Gericht=&Rechtssatznummer=&Rechtssatz=&Fundstelle=&AenderungenSeit=Undefined&SucheNachRechtssatz=True&SucheNachText=False&GZ=&VonDatum=&BisDatum=30.10.2015&Norm=&ImRisSeit=Undefined &ResultPageSize=100&Suchworte=&Position=1
?Abfrage=Justiz&Gericht=&Rechtssatznummer=&Rechtssatz=&Fundstelle=&AenderungenSeit=Undefined&SucheNachRechtssatz=True&SucheNachText=False&GZ=&VonDatum=&BisDatum=30.10.2015&Norm=&ImRisSeit=Undefined &ResultPageSize=100&Suchworte=&Position=1
?Abfrage=Justiz&Gericht=&Rechtssatznummer=&Rechtssatz=&Fundstelle=&AenderungenSeit=Undefined&SucheNachRechtssatz=True&SucheNachText=False&GZ=&VonDatum=&BisDatum=30.10.2015&Norm=&ImRisSeit=Undefined &ResultPageSize=100&Suchworte=&Position=1
?Abfrage=Justiz&Gericht=&Rechtssatznummer=&Rechtssatz=&Fundstelle=&AenderungenSeit=Undefined&SucheNachRechtssatz=True&SucheNachText=False&GZ=&VonDatum=&BisDatum=30.10.2015&Norm=&ImRisSeit=Undefined &ResultPageSize=100&Suchworte=&Position=1
?Abfrage=Justiz&Gericht=&Rechtssatznummer=&Rechtssatz=&Fundstelle=&AenderungenSeit=Undefined&SucheNachRechtssatz=True&SucheNachText=False&GZ=&VonDatum=&BisDatum=30.10.2015&Norm=&ImRisSeit=Undefined &ResultPageSize=100&Suchworte=&Position=1
?Abfrage=Justiz&Gericht=&Rechtssatznummer=&Rechtssatz=&Fundstelle=&AenderungenSeit=Undefined&SucheNachRechtssatz=True&SucheNachText=False&GZ=&VonDatum=&BisDatum=30.10.2015&Norm=&ImRisSeit=Undefined &ResultPageSize=100&Suchworte=&Position=1
http://jsoup.org/

Evaluation of Search Engines 76

Queries Lucene RIS
Total queries 100 100
Queries with results 95 82
Queries with common results 78

Table 18: Result Overlap

the German speci�c features in Lucene e.g. German stemming, German stop
word removal. An example for the second argument is the query "pisten-
raupe" that retrieved 15 results in RIS and 21 results in Lucene. We took a
look at the result sets of both queries and �gured out that the RIS results
are a sub set of the Lucene results. So, Lucene retrieved 6 more documents,
which we further analysed. We �gured out that in each of those documents
the plural form "pistenraupen" appeared, but not the singular form "pisten-
raupe". Thus, due to the stemming feature, which reduces terms to their
root forms, Lucene retrieved 6 additional documents.

5 Accessibility and Enrichment of Search

RIS is an information system that is available to all people. However, it is
mainly used by professionals, as described in section 3.1. For non professional
users it is challenging to retrieve the desired information within a reasonable
amount of time. As a consequence, we discuss in this chapter possibilities
that allow to improve the user experience through the integration of external
sources and additional search concepts.

5.1 Integration of External Sources

The integration of external sources is a good way to enrich the search with
additional information. We took a closer look at some options, which are
illustrated in �gure 18. The arcs de�ne the information �ow and are labelled
with a number. This number is used to reference to the concepts behind the
arcs, which are described below.

In this thesis, we de�ne Web-sites as external sources. We selected the fol-
lowing Web-sites, since they o�er legal content that relates to documents in
RIS.

• HELP: HELP is a portal of the Austrian Federal Administration.
The information platform was launched in 1997 o�ering citizens a vast
amount of administrative content.37

• Wikipedia: Wikipedia is an Internet encyclopedia, that is freely avail-
able and covers a huge amount of di�erent content.38

[1] In-Links: Wikipedia and HELP provide among other content plenty
of articles talking about legal content. This legal content partly relates to
the Austrian law and references in some cases to concrete RIS documents
through an URL. Consequently, we analysed the URLs and amount of URLs
that reference to RIS documents. In our analysis, we considered URLs that
contain the domain name "www.ris.bka.gv.at".

At �rst, we analysed the Wikipedia links that reference to RIS documents.
We identi�ed 2 possibilities to get those links. The �rst option was to crawl
the whole German Wikipedia and extract the relevant links from the HTML

37https://www.help.gv.at/Portal.Node/hlpd/public
38https://de.wikipedia.org/wiki/Wikipedia:Hauptseite

77

https://www.help.gv.at/Portal.Node/hlpd/public
https://de.wikipedia.org/wiki/Wikipedia:Hauptseite

Accessibility and Enrichment of Search 78

External Source

RIS

2
3

1

4

Figure 18: Integration of External Sources

documents. Since there are plenty of Wikipedia pages, we went for the second
option. In this option we made use of MediaWiki, which is a free server-based
software for WikiMedia content. WikiMedia relates to a group of projects,
including Wikipedia, Wiktionary, Wikiquote, etc. MediaWiki processes and
displays WikiMedia data that is stored in a MySQL database. Whenever a
user edits a page, Mediawiki recognizes it and writes it to the database.39

WikiMedia provides di�erent dumps of those databases as download on their
Web-site. We downloaded the external links and page SQL dump of the
German Wikipedia.40 We restored the dumps with the open source database
MySQL.41 The external links table stores and tracks all external links. It con-
tains the following attributes: "el_id", "el_from", "el_to" and "el_index".
Since URLs are not su�cient enough, we also include the page database.
This database can be considered as the core of Wikipedia, containing meta-
data about WikiMedia pages. Listing 10 shows the SQL query retrieving the
external RIS links and the title of the respective pages. We joined the two
tables based on the page identi�er and selected the links containing the RIS
domain name. Since the attributes "el_to" and "page_title" were stored in
a Binary Large Object (BLOB), we had to cast them to UTF-8, a character

39https://www.mediawiki.org/wiki/Manual:What_is_MediaWiki%3F
40https://dumps.wikimedia.org/dewiki/20150826/
41https://www.mysql.de/

https://www.mediawiki.org/wiki/Manual:What_is_MediaWiki%3F
https://dumps.wikimedia.org/dewiki/20150826/
 https://www.mysql.de/

Accessibility and Enrichment of Search 79

Link HELP Wikipedia
In-links 1,448 5,825
Direct In-links 1,173 5,126

Table 19: In-Links

encoding for all common characters. BLOB is a data type that stores a vari-
able amount of data in a binary format.42 Listing 10 shows the SQL query
that we used to extract the relevant RIS links.

Listing 10: MediaWiki SQL Query

1 SELECT el_from, cast(el_to as char(1000) character set utf8), cast(

p.page_title as char(1000) character set utf8)

2 FROM delinks.externallinks e INNER JOIN page.page p ON e.el_from = p

.page_id

3 WHERE e.el_to LIKE '%ris.bka.gv.at%';

We stored the results from the SQL query in a CSV �le and pre�xed every
name with the Wikipedia domain name "https://de.wikipedia.org/wiki/" in
order to get the URL of the WikiMedia page. In total, we identi�ed 5,825
RIS links. However, not all of those links were relevant for us, because not
all of them referenced to concrete RIS documents. However, around 88 % of
the links can be referenced to concrete RIS documents, see table 19.

Extracting the RIS links from the HELP platform required crawling all
HTTP pages. To do so, we used the web crawler crawler4j. This crawler
is an open source web crawler implemented in Java. We decided in favour
to this crawler, because it o�ers a simple interface and perfectly served our
purpose for crawling web pages.43 We were able to download 37,479 HELP
pages. In the next step we used the JSOUP parser to extract the RIS links,
title and the HELP links from the HTML pages. We stored the information
in a CSV �le, which we further analysed. We found out that there are in
total 1,448 RIS links. 81 % of those links can be related to concrete RIS
documents, see table 19.

The analysis pointed out that there are around 6,000 links that can be re-
lated to concrete RIS documents, see table 19. Those concrete links, which
we describe as direct in-links, can be related to RIS documents based on
speci�c metadata e.g. "Dokumentnummer" or "Gesetzesnummer". Table 20

42https://dev.mysql.com/doc/refman/5.7/en/blob.html
43https://github.com/yasserg/crawler4j

https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://github.com/yasserg/crawler4j

Accessibility and Enrichment of Search 80

Web-site Direct In-link
HELP: "Hack-
lerregelung"

https://www.ris.bka.gv.at/

GeltendeFassung.wxe?Abfrage=Bundesnormen&

Gesetzesnummer=10008422

Wikipedia:
"Hackler-
regelung"

https://www.ris.bka.gv.at/Dokument.

wxe?Abfrage=Justiz&Dokumentnummer=JJR_

20100727_OGH0002_010OBS00103_10K0000_001

Table 20: Direct In-link

illustrates an example of a direct in-link. We searched for the term "Hackler-
regelung" in Wikipedia and HELP. We retrieved documents that contained
links to concrete RIS documents. The direct in-links as well as the corre-
sponding link and content of the source article in Wikipedia or HELP can be
assigned to the relevant documents in RIS. This information can be added
to additional metadata �elds and provided to the user at query time.

[2] Search on HELP Content: Another option to improve the user expe-
rience is to provide the user in RIS a search on HELP content. We considered
HELP and not Wikipedia, because the Federal Chancellery of Austria men-
tioned HELP as a source that provides valid content about the Austrian law.
We implemented the HELP Search in Lucene and Mindbreeze. Mindbreeze
already crawled and indexed HELP for another project. Thus, queries on
the HELP index could be performed without any con�guration.

In Lucene we had to crawl and index HELP, which required the develop-
ment of a custom application. We crawled the HELP pages with the crawler
crawler4j. In the next step, we used Apache Tika to extract the relevant
content e.g. text, URLs, from the HTML pages. Apache Tika is an open
source tool, which allows to extract metadata as well as text from a variety
of �le types.44 We created a Lucene index on the content, we extracted with
Apache Tika. The index was composed of 2 �elds. The �rst �eld was �lled
with the title of each HTML page. For the second �eld we automatically
extracted the text between the HTML tags. This index could be used to
provide the user with additional information, since HELP provides plenty of
summaries and descriptions about legal concepts.

44https://tika.apache.org/

https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10008422
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10008422
https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10008422
https://www.ris.bka.gv.at/Dokument.wxe?Abfrage=Justiz&Dokumentnummer=JJR_20100727_OGH0002_010OBS00103_10K0000_001
https://www.ris.bka.gv.at/Dokument.wxe?Abfrage=Justiz&Dokumentnummer=JJR_20100727_OGH0002_010OBS00103_10K0000_001
https://www.ris.bka.gv.at/Dokument.wxe?Abfrage=Justiz&Dokumentnummer=JJR_20100727_OGH0002_010OBS00103_10K0000_001
https://tika.apache.org/

Accessibility and Enrichment of Search 81

Results Queries
1 or more results 11,968
No results 3,115

Table 21: Second Search in HELP

[3] Second Search in HELP: This option assumes that the user already
executed a query. Re�ning the search, RIS could provide the user the pos-
sibility to execute a second search on metadata e.g. title, of the respective
result document in the HELP index. We implemented this option in Lucene
and Mindbreeze. However, we also analysed the feasibility of this option,
since it could have happened that hardly any results are retrieved from a
second search on the HELP index. Thus, we developed an application that
extracts the title of the database "Bundesnormen" and executes a query for
each title on the HELP index. We were able to extract 14,960 di�erent
queries from the database. We identi�ed that 80 % of those queries retrieved
at least one result, see table 21. Thus, the option is feasible due to the high
rate of retrieved results.

5.2 Further Solutions

Whereas, section 5.1 focuses on possibilities of integrating additional exter-
nal sources, this section discusses a variety of other possibilities to enrich the
search.

[4] Second Search in RIS: Figure 18 integrates also another option,
which deals with the execution of a second query on an already existing
RIS metadata �eld. We implemented this functionality in Lucene and Mind-
breeze. In both cases, the user already executed a query and retrieved results.
Re�ning the search, the user could now execute a second search on a meta-
data �eld e.g. paragraph number, of a speci�c document in the result set.

User Interface: Mindbreeze o�ers an editor and pre-de�ned HTML inte-
gration services, that allow to integrate Mindbreeze search features in already
existing Web-sites. Consequently, we built a user interface that covers the
previously discussed options. We downloaded the HTML Web-site of the
search mask "Bundesrecht konsolidiert", see �gure 7, and the result page of
this search mask. We integrated the Mindbreeze search in this HTML pages

Accessibility and Enrichment of Search 82

and executed them on a local Web-server. Figure 19 illustrates the user inter-
face of the result page. In this case, the user searched for "Radfahrstreifen"
in the �eld "Suchworte". We designed the result page similar to the current
RIS result page and added new features. When the user clicks on the HELP
symbol of the �rst document, the query "Bodenmarkierungsverordnung" is
executed on the HELP index. However, when the user clicks on the para-
graph symbol of the �rst document, a second search with "�20" is executed.
Moreover, we integrated the faceted search on "Datum" and "Rechtsgrund-
lage", such that the user can �lter the search. In this case, the 44 results of
the query are distributed over the categories 2013, 2012, 2011 and 1900. The
value next to each year indicates the amount of documents in the respective
year e.g. the year 2013 contains 5 documents matching to the user query.

Figure 19: User Interface

Entity Extraction: The extraction of entities is another possibility to en-
rich the search. The entities e.g. date, name, location, can be used for various
scenarios. These scenarios range from using the entities for categories in a
faceted search to enriching the entities with additional information e.g. links
to other Web-sites. We discuss some scenarios below and provide possible
solutions on how to integrate them.

Accessibility and Enrichment of Search 83

There are plenty of ways in order to extract entities out of textual content.
One way is to use regular expressions for this task, see section 2.5. Mind-
breeze o�ers this service through the Entity Recognition Parameter. Entities
are automatically generated by applying pattern rules based on regular ex-
pressions. The extracted entities reference to metadata that can be used for
a faceted search.

Lucene does not o�er this service out of the box. However, it can be im-
plemented in Lucene with a custom solution. The PatternTokenizer can be
used to de�ne regular expression that are applied on the textual input.45

This tokenizer takes the arguments pattern and group. Pattern refers to the
generation of regular expressions. Group describes how the tokens are being
generated. The group with the value -1 splits the tokens based on the reg-
ular expression. By contrast, the group with the value 0 selects the tokens
matching to the regular expression. Since we want to extract the matching
tokens, we used the 0 group. We created a custom analyzer with the Pat-
ternTokenizer that extracts dates from textual content, see appendix B.12.
We applied the tokenizer on a speci�c �eld in Lucene, which can be used to
create categories for the faceted search, see appendix B.7. Since we did not
want to apply the custom analyzer to all other �elds, we had to integrate the
PerFieldAnalyzerWrapper.46

Extracting entities through regular expressions is one option. Still, there
are more possibilities that can be applied e.g. through the use of Natural
Language Processing (NLP) tools and methods. Named Entity Extraction,
which is such a NLP task, uses techniques that allow to automatically extract
entities out of textual content. Lucene can be combined with di�erent NLP
tools. OpenNLP is a machine learning library for the processing of unstruc-
tured natural language text. It supports the NLP task described in section
2.5.47 The main disadvantage of OpenNLP is that it can't collaborate with
Lucene out of the box. Thus, NLP4L was developed to tackle this collabo-
ration issue. NLP4L uses NLP methods that can be applied on the Lucene
index.48

45https://lucene.apache.org/core/4_0_0/analyzers-common/org/apache/

lucene/analysis/pattern/PatternTokenizer.html
46https://lucene.apache.org/core/4_0_0/analyzers-common/org/apache/

lucene/analysis/miscellaneous/PerFieldAnalyzerWrapper.html
47http://opennlp.apache.org/
48https://github.com/NLP4L/nlp4l

https://lucene.apache.org/core/4_0_0/analyzers-common/org/apache/lucene/analysis/pattern/PatternTokenizer.html
https://lucene.apache.org/core/4_0_0/analyzers-common/org/apache/lucene/analysis/pattern/PatternTokenizer.html
https://lucene.apache.org/core/4_0_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/PerFieldAnalyzerWrapper.html
https://lucene.apache.org/core/4_0_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/PerFieldAnalyzerWrapper.html
http://opennlp.apache.org/
https://github.com/NLP4L/nlp4l

Accessibility and Enrichment of Search 84

Classi�cation: The classi�cation refers to the automatic generation of cat-
egories e.g. criminal law, procedural law, based on entire documents. These
categories can be used to provide the user similar cases and documents de-
pending on the content he is looking for.

Mindbreeze o�ers such classi�cation services out of the box through the Sup-
port Vector Machine (SVM) concept, see section 2.5. First of all, a training
set is created. This training set is composed of pre-de�ned categories and
documents relating to the respective categories. Each document contains
speci�c features and is represented as a vector of those features. The fea-
tures are weighted according to the number of occurrences of the feature in
the document, the existence or non existence of the feature in the document
and the probability the feature occurs within a certain category. The input
data is matched against the training data and classi�ed through linear clas-
si�ers.

Lucene o�ers some classi�cation techniques starting from version 4.2. It im-
plements Naive Bayes and k-NN classi�cation algorithms. However, Lucene
can be combined with other solutions like Apache Mahout as well.49 Apache
Mohout provides an environment that enables integrating machine learning
functionalities in applications. It o�ers a vast amount of algorithms ranging
from �ltering to classi�cation and clustering of data.50

Reference Reading: Many research was done on classi�cation and entity
extraction. However, juridical documents are usually more complex in terms
of phrase structure and terminologies being used. This makes it more dif-
�cult for NLP and classi�cation tasks to produce reliable results. However,
a scienti�c work from the University of Evora deals with the information
extraction of legal documents [33]. In this work, the researchers applied
linguistic information and machine learning techniques. Their approach con-
sidered document classi�cation for describing legal concepts based on SVM
and Named Entity Extraction through a natural language parser. The legal
documents were retrieved from the EUR-Lex Web-site. SVM was chosen
because it is computationally e�cient and very robust in case of larger data
sets. SVM light, an implementation of SVM in the programming language C,

49http://soleami.com/blog/comparing-document-classification-functions-

of-lucene-and-mahout.html
50http://mahout.apache.org/

http://soleami.com/blog/comparing-document-classification-functions-of-lucene-and-mahout.html
http://soleami.com/blog/comparing-document-classification-functions-of-lucene-and-mahout.html
http://mahout.apache.org/

Accessibility and Enrichment of Search 85

was selected for the classi�cation task.51 Instead of using statistical machine
learning approaches, the researchers used linguistic approaches. PALAVRAS,
a natural language parser, developed by the Institute of Language and Com-
munications of the University of Southern Denmark was used for this task.52

The experiment was carried out on a data set covering International Agree-
ments from EUR-Lex.53 The downloaded data was composed of 2,714 agree-
ments from 1953 to 2008 in four di�erent languages (English, German, Ital-
ian and Portuguese). An EUR-lex documents is described by the following
metadata: title, reference, dates, classi�cations and miscellaneous informa-
tion. There are three di�erent types of classi�cations: EUROVOC descriptor,
subject matter and directory code.

The �rst approach was to classify the documents. The researchers selected
the directory code in order to assign the legal documents to the relevant
categories. Those categories were used to train the SVM algorithm. The
analysis of the experiment showed that the German and the English lan-
guage had similar results with a precision of 90 % and a recall of 80 %. The
results were slightly better than those of the Italian and Portuguese language.
However, the experiment demonstrated a high amount of correctly classi�ed
documents over all languages [33].

In the second approach, the researchers carried out an experiment on the ex-
traction of entities of an English data set through a natural language parser.
They extracted the categories location names, organization names, dates,
references to documents and document articles. Personal names were not
extracted since they hardly showed any convenient result. The analysis of
the results showed a high number of references to other documents and ar-
ticles, on average 28 entities per document. This information could be used
to demonstrate a chain of legislative cases of a speci�c legal document. The
categories organizations and countries showed also high numbers of entities
per document. However, taking the precision into account only 35 % of the
organizations and references were correct. In terms of the organizations this
could be caused by natural language parser itself, since all non assigned en-
tities were transferred to the organizations category. The high error rate of
references could be explained by the relatively complex structure of sentences
in legal documents [33].

51http://svmlight.joachims.org/
52http://beta.visl.sdu.dk/constraint_grammar.html
53http://eur-lex.europa.eu/homepage.html

http://svmlight.joachims.org/
http://beta.visl.sdu.dk/constraint_grammar.html
http://eur-lex.europa.eu/homepage.html

6 Conclusion

In this chapter, we summarize the key �nding of the present thesis and pro-
vide suggestions for future work. We evaluated the following search sys-
tems: SQL Server, Lucene and Mindbreeze InSpire. The SQL Server, a
relational database of the vendor Microsoft, is the current search system of
RIS. Whereas, Lucene is an open-source full-text search engine, Mindbreeze
is an Austrian based company that o�ers the InSpire Search Appliance, a
combination of software and optimized hardware.

The evaluation of the search systems was based on the requirements that
were provided by the Federal Chancellery of Austria, and additional indi-
cators e.g. query times, index size. The requirements range from standard
full-text search features, see chapter 2, to RIS speci�c features. The imple-
mentation and evaluation of the requirements produced valuable information.
On the one hand, it demonstrated the limits of the SQL Server, the current
search system of RIS. Despite the integrated full-text search features of the
SQL Server, only 41 % of the requirements could be met. Furthermore, in
38 % of the requirements custom implementations were required and even
20 % of the requirements could not be met at all. By contrast, Lucene and
Mindbreeze could meet all requirements and only a few requirements had
to be implemented through custom solutions. Furthermore, the evaluation
of Lucene and Mindbreeze according to the speci�c indicators, pointed out
that both solutions are very scalable and e�cient in the retrieval of content.
Finally, we identi�ed that the search systems are very di�erent and charac-
terised by strength and weaknesses.

Since Lucene is an open-source project under the Apache Software License,
the entire source code is available and can be adapted accordingly. Further-
more, Lucene provides plenty of documentation and has a huge community,
which constantly contributes to the improvement of the search engine. How-
ever, Lucene has also some drawbacks. Lucene is not a standalone solution.
Thus, it requires programming e�ort to create a search solution. Moreover,
the Lucene developers don't undertake any guarantees or contractual obliga-
tions for issues arising with the use of the Lucene code. Finally, migrating
from an older version to a newer version in Lucene requires to adapt the code
according to the changes, which might cause issues.

On the contrary, Mindbreeze is a commercial software vendor that provides
a fully functional search environment through the InSpire Search Appliance.
Con�guring and implementing Mindbreeze can be done in an e�cient and

86

Conclusion 87

fast way through a web interface. Furthermore, Mindbreeze has plenty of
di�erent connectors to various sources and o�ers a variety of additional plu-
gins e.g. stemming, synonyms, that can be easily added. Also, Mindbreeze
provides plenty of additional features e.g. permission services, app.telemetry.
Mindbreeze implemented a permission and access right system, which enables
limiting the accessibility to speci�c content based on pre-de�ned user groups.
App.telemetry is a powerful framework that can be used for Application-
Service-Level-Management and Resource-Optimization. It collects and anal-
yses response and processing times of the InSpire Search Appliances. The
service provides information along the whole query process. However, Mind-
breeze has also some weaknesses. The licensing is based on the amount
of documents and not transparent above a certain amount of documents.
This price model requires to know the amount of documents in advance and
doesn't consider the actual size of documents, since only the amount of docu-
ments are relevant. Finally, if features and functionalities are desired that go
beyond the standard implementation of the InSpire Appliance, cost-intensive
individual solutions are necessary.

In the last part of the thesis, we discussed various concepts according to
the enrichment of the search in order to improve the search experience of the
user. Whereas, some of those concepts are feasible e.g. integration of exter-
nal sources, other concepts proved to be not useful e.g. Natural Language
Processing (NLP) tasks.

Finally, there are other platforms and projects similar to RIS. The Open-
Laws platform is a project supported by the European Union, which helps
to �nd legal information more easily as well as organize and share it with
others.54 The objective of this project is to makes legal information more
accessible through a network of legislation, case law, literature and legal ex-
perts. Since OpenLaws is an open data platform, it could be integrated in
RIS.

54http://www.openlaws.eu/

http://www.openlaws.eu/

REFERENCES 88

References

[1] C.C. Aggarwal and C.X. Zhai. Mining Text Data. Springer, 2012.

[2] Mark Arono� and Kirsten Fudeman. What is Morphology? Blackwell,
2007.

[3] Ahmet Arslan and Ozgur Yilmazel. Quality Benchmarking Relational
Databases and Lucene in the TREC4 Adhoc Task Environment. Pro-
ceedings of the International Multiconference on Computer Science and
Information Technology, 2010.

[4] Barotanyi, Behr, Eibl, Freitter, Gottwald, Herwig, Havranek, Karning,
Klauser, Kustor, Kraut, Ledinger, Leitold, Medimorec, Niedermueller,
Pirker, Posch, Regenspurger, Reichstaedter, Rupp, Scheidbach, Tauber,
Vock, and Wagner-Leimbach. Behoerden im Netz. Das oesterreichische
E-Government ABC. Kny and Partner, 2014.

[5] Chris Borrelli. IEEE 802.3 Cyclic Redundancy Check. 2001.

[6] Bundeskanzleramt. Rechtsinformationssystem. https://www.ris.bka.
gv.at, October 2015.

[7] Vannevar Bush. As We May Think. Atlantic Monthly, 1945.

[8] Jörg Caumanns. A fast and simple stemming algorithm for German
words. 1999.

[9] Paice C.D. Method for Evaluation of Stemming Algorithms Based on Er-
ror Counting. Journal of the American Society for Information Science,
1996.

[10] Peter Christen. A Comparison of Personal Name Matching: Techniques
and Practical Issues. Manning Publications Co., 2006.

[11] C.W. Cleverdon. The Cran�eld tests on index language devices. Aslib
Proceedings, 1967.

[12] Ronan Collobert, Jason Weston an Leon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural Language Processing (Almost)
from Scratch. Journal of Machine Learning Research, 2010.

[13] ElasticSearch. https://lucene.apache.org/core/, October 2015.

[14] Apache Software Foundation. Apache tika. https://tika.apache.

org/, October 2012.

https://www.ris.bka.gv.at
https://www.ris.bka.gv.at
https://lucene.apache.org/core/
https://tika.apache.org/
https://tika.apache.org/

REFERENCES 89

[15] Gartner. Gartner magic quadrant. http://www.gartner.com/

technology/research/methodologies/research_mq.jsp, September
2015.

[16] Gartner. Magic quadrant for enterprise search. http://www.gartner.
com/technology/reprints.do?id=1-2KSMU7V&ct=150806&st=sb, Au-
gust 2015.

[17] Ed Greengrass. Information Retrieval: A Survey. 2000.

[18] Steve R. Gunn. Support Vector Machines for Classi�cation and Regres-
sion. 1998.

[19] D. K. Harmann. Overview of the �rst Text REtrieval Conference
(TREC-1). NIST Special Publication, 1993.

[20] Erik Hatcher and Otis Gospodnetic. Lucene in Action. Manning Pub-
lications Co., 2005.

[21] Luhn H.P. A statistical approach to mechanized endocing and searching
of literary information. IBM Journal of Resarch and Development, 1957.

[22] Karen Sparck Jones. Natural language processing: a historical review.
2011.

[23] DIK L. LEE, HUEI CHUANG, and KENT SEAMONS. Document
Ranking and the Vector-Space Model. 1997.

[24] Lucene. Apache lucene core. https://lucene.apache.org/core/, Au-
gust 2015.

[25] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schuetze.
An Introduction to Information Retrieval. Cambridge University Press,
2009.

[26] Microsoft. Full-text predicates and functions overview. https:

//technet.microsoft.com/en-us/library/ms142583%28v=sql.105%

29.aspx, October 2015.

[27] Microsoft. Full-text search architecture. https://msdn.microsoft.

com/en-us/library/ms142541%28v=sql.105%29.aspx, October 2015.

[28] Microsoft. Full-text search overview. https://technet.microsoft.

com/en-us/library/ms142547%28v=sql.105%29.aspx, October 2015.

http://www.gartner.com/technology/research/methodologies/research_mq.jsp
http://www.gartner.com/technology/research/methodologies/research_mq.jsp
http://www.gartner.com/technology/reprints.do?id=1-2KSMU7V&ct=150806&st=sb
http://www.gartner.com/technology/reprints.do?id=1-2KSMU7V&ct=150806&st=sb
https://lucene.apache.org/core/
https://technet.microsoft.com/en-us/library/ms142583%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/ms142583%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/ms142583%28v=sql.105%29.aspx
https://msdn.microsoft.com/en-us/library/ms142541%28v=sql.105%29.aspx
https://msdn.microsoft.com/en-us/library/ms142541%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/ms142547%28v=sql.105%29.aspx
https://technet.microsoft.com/en-us/library/ms142547%28v=sql.105%29.aspx

REFERENCES 90

[29] Mindbreeze. The european enterprise search appliance.
https://www.mindbreeze.com/the-european-enterprise-search-

appliance.html, August 2015.

[30] Mindbreeze. System overview. http://help.mindbreeze.com/index.
php?topic=doc/Product-Information---Mindbreeze-InSpire-

eng/system-overview.htm, September 2015.

[31] Walker Morgan. Ten years of the lucene search engine at
apache. http://www.h-online.com/open/news/item/Ten-years-

of-the-Lucene-search-engine-at-Apache-1350761.html, Septem-
ber 2011.

[32] MyHistoryLab. The Beginnings of Civilization. Person, 2009.

[33] Paulo Quaresma and Teresa Goncalves. Using Linguistic Information
and Machine Learning Techniques to Identify Entities from Juridical
Documents.

[34] Juan Ramos. Using TF-IDF to Determine Word Relevance in Document
Queriesl.

[35] Gerard Salton. The SMART Retrieval System - Experiments in Auto-
matic Document Retrieval. Prentice Hall Inc., 1971.

[36] Amit Singhal. Modern Information Retrieval: A Brief Overview. Google
Inc.

[37] Solr. Apache solr. http://lucene.apache.org/solr/, September
2015.

[38] Simone Teufel. An Overview of Evaluation Methods in TREC Ad Hoc
Information Retrieval and TREC Question Answering. Springer, 2007.

[39] Daniel Tunkelang. Faceted Search. Morgan and Claypool, 2009.

[40] Panos Vassiliadis and Alkis Simitsis. Extraction, Transformation, and
Loading. 2007.

[41] Addison Wesley. Evaluating Search Engines. 2008.

https://www.mindbreeze.com/the-european-enterprise-search-appliance.html
https://www.mindbreeze.com/the-european-enterprise-search-appliance.html
http://help.mindbreeze.com/index.php?topic=doc/Product-Information---Mindbreeze-InSpire-eng/system-overview.htm
http://help.mindbreeze.com/index.php?topic=doc/Product-Information---Mindbreeze-InSpire-eng/system-overview.htm
http://help.mindbreeze.com/index.php?topic=doc/Product-Information---Mindbreeze-InSpire-eng/system-overview.htm
http://www.h-online.com/open/news/item/Ten-years-of-the-Lucene-search-engine-at-Apache-1350761.html
http://www.h-online.com/open/news/item/Ten-years-of-the-Lucene-search-engine-at-Apache-1350761.html
http://lucene.apache.org/solr/

Preliminaries Content 91

A Preliminaries Content

A.1 Hash Function

Listing 11: Hash Function

1 public class HashFunction {

2 public static void main(String[] args) {

3 // terms of dictionary

4 String[] input = {"abzuwarten", "anderen", "anzurufende",

"auch", "Aufgabe", "aus", "Ausschuss"};

5 long[] positions = new long[input.length];

6

7 for (int i = 0; i < input.length; i++) {

8 // get bytes from string

9 byte bytes[] = input[i].getBytes();

10

11 // create object

12 Checksum checksum = new CRC32();

13

14 // create crc32 value

15 checksum.update(bytes, 0, bytes.length);

16

17 // get crc32 value

18 long checksumValue = checksum.getValue();

19

20 // assign crc32 value to array through modulo function

21 int pos = (int) (checksumValue % 7);

22 positions[pos] = checksumValue;

23 System.out.println("position: " + pos + ", term: " +

input[i] + ", hash value: " +

Long.toHexString(checksumValue));

24 }

25 }

26 }

Lucene Content 92

B Lucene Content

B.1 Indexer

Listing 12: Lucene Indexer

1 public class Indexer {

2 public static void main(String[] args) throws IOException {

3 String indexDir = "E:\\Lucene\\Index";

4 String dataDir = "E:\\Lucene\\Data";

5

6 File dirD = new File(dataDir);

7 File[] files = dirD.listFiles();

8

9 for (int i = 0; i < files.length; i++) {

10 // (1) Create Lucene index

11 File f = files[i];

12 GermanAnalyzer analyzer = new

GermanAnalyzer(Version.LUCENE_40);

13 FSDirectory dirI = FSDirectory.open(new File(indexDir));

14 IndexWriterConfig config = new

IndexWriterConfig(Version.LUCENE_40, analyzer);

15 IndexWriter writer = new IndexWriter(dirI, config);

16

17 // (2) Index file content and filename

18 Document doc = new Document();

19 doc.add(new Field("text", new FileReader(f)));

20 doc.add(new Field("name", f.getName(), Field.Store.YES,

Field.Index.ANALYZED));

21 writer.addDocument(doc);

22 writer.close();

23 }

24 }

25 }

B.2 Searcher

Listing 13: Lucene Searcher

1 public class Searcher {

2 public static void main(String[] args) throws IOException,

ParseException {

Lucene Content 93

3 String indexDir = "E:\\Lucene\\Index";

4 GermanAnalyzer analyzer = new

GermanAnalyzer(Version.LUCENE_40);

5

6 // (1) Open index

7 IndexReader reader =

DirectoryReader.open(FSDirectory.open(new

File(indexDir)));

8 IndexSearcher searcher = new IndexSearcher(reader);

9

10 // (2) Parse query

11 QueryParser parser = new QueryParser(Version.LUCENE_40,

"text", analyzer);

12 Query query = parser.parse("user query");

13

14 // (3) Search index

15 ScoreDoc[] hits = searcher.search(query, null, 20).scoreDocs;

16

17 for (int i = 0; i < hits.length; i++) {

18 // (4) Retrieve filename

19 Document hit = searcher.doc(hits[i].doc);

20 System.out.println(hit.get("name"));

21 }

22 reader.close();

23 }

24 }

B.3 Database Connection and Indexing

Listing 14: Database Connection and Indexing

1 // Connect to SQL Server

2 Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

3 conn = DriverManager.getConnection("jdbc:sqlserver://localhost;

4 databaseName=Ris_Bundesnormen", "USER", "PASSWORD");

5

6 // SQL on database Bundesnormen

7 String sqlBundesnormen =

8 "SELECT bd.ID,

9 ISNULL(bd.Dokumentnummer, '') Dokumentnummer,

10 ISNULL(bs.Suchworte, '') Suchworte,

11 ISNULL(bd.Kurztitel, '') Kurztitel,

Lucene Content 94

12 ISNULL(bd.Langtitel, '') Langtitel,

13 ISNULL(bd.Abkuerzung, '') Abkuerzungen,

14 Paragraphnummer,

15 ISNULL(bd.Paragraphbuchstabe, '') Paragraphbuchstabe,

16 Artikelnummer,

17 ISNULL(bd.Artikelbuchstabe, '') Artikelbuchstabe,

18 ISNULL(bd.Anlagennummer, '') Anlagennummer,

19 ISNULL(bd.Anlagenbuchstabe, '') Anlagenbuchstabe,

20 ISNULL(bd.Anlagenteil, '') Anlagenteil,

21 ISNULL(bd.StammnormPublikationsorgan, '')

StammnormPublikationsorgan,

22 ISNULL(bd.NovellenPublikationsorgan, '')

NovellenPublikationsorgan,

23 ISNULL(bd.StammnormBgblnummer, '') StammnormBgblnummer,

24 ISNULL(bd.NovellenBgblnummer, '') NovellenBgblnummer,

25 ISNULL(bd.Typ, '') Typ,

26 ISNULL(bd.IndexText, '') IndexText,

27 ISNULL(bd.Unterzeichnungsdatum, '') Unterzeichnungsdatum,

28 ISNULL(bd.Inkrafttretedatum, '') Inkrafttretedatum,

29 ISNULL(bd.Ausserkrafttretedatum, '') Ausserkrafttretedatum,

30 ISNULL(bd.Veroeffentlichungsdatum, '') Veroeffentlichungsdatum,

31 ISNULL(bd.Aenderungsdatum, '') Aenderungsdatum

32 FROM BundesnormenDokument bd

33 INNER JOIN BundesnormenSuchworteView bs ON bd.ID =

bs.BundesnormenDokumentID";

34

35 // Create index with custom analyzer

36 CustomAnalyzer analyzer = new CustomAnalyzer();

37 FSDirectory dirI = FSDirectory.open(new File(indexDir));

38 IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_40,

analyzer);

39 IndexWriter writer = new IndexWriter(dirI, config);

40

41 // Execute SQL query and index content

42 Statement statement = conn.createStatement();

43 ResultSet rs = statement.executeQuery(sqlBundesnormen);

44

45 while (rs.next()) {

46 // Create Lucene document and the relevant fields

47 Document doc = new Document();

48 doc.add(new Field("Suchworte", rs.getString("Suchworte"),

Field.Store.YES, Field.Index.ANALYZED,

Field.TermVector.WITH_OFFSETS));

Lucene Content 95

49 // add other fields according to the SQL statement

50 writer.addDocument(doc);

51 writer.close();

52 }

B.4 Range Query

Listing 15: Numeric Range Query

1 int minimum = 1;

2 int maximum = 3;

3 NumericRangeQuery nq =

NumericRangeQuery.newIntRange("Paragraphnummer", minimum,

maximum, true, true);

Listing 16: Term Range Query

1 String min = "a";

2 String max = "d";

3 BytesRef bytes1 = new BytesRef(min);

4 BytesRef bytes2 = new BytesRef(max);

5 Query rq = new TermRangeQuery("Paragraphbuchstabe", bytes1, bytes2,

true, true);

Listing 17: Field Type

1 // Field for integer values

2 doc.add(new IntField("Paragraphnummer",

rs.getInt("Paragraphnummer"), Field.Store.YES));

3

4 // Field for string values

5 doc.add(new Field("Paragraphbuchstabe",

rs.getString("Paragraphbuchstabe"), Field.Store.YES,

Field.Index.NOT_ANALYZED, Field.TermVector.WITH_OFFSETS));

6

7 // Field for string values defining the structure of the date

8 doc.add(new Field("Veroeffentlichungsdatum",

DateTools.dateToString(rs.getDate("Veroeffentlichungsdatum"),

DateTools.Resolution.DAY), Field.Store.YES,

Field.Index.ANALYZED, Field.TermVector.YES));

Lucene Content 96

B.5 Update

Listing 18: Lucene Update

1 // Open directory

2 FSDirectory dir = FSDirectory.open(new File(indexDir));

3 IndexWriter writer = new IndexWriter(dir, new

IndexWriterConfig(Version.LUCENE_40, analyzer));

4 Document doc = new Document();

5

6 // Update specific document in Lucene index

7 doc.add(new Field("Suchworte", "new text", Field.Store.YES,

Field.Index.ANALYZED));

8 writer.updateDocument(new Term("ID", "123"), doc);

9 writer.close();

B.6 Auto Corrections

Listing 19: Lucene Auto Corrections

1 public class SpellCheckIndexer {

2

3 private static IndexWriter writer;

4 private static GermanAnalyzer analyzer = new

GermanAnalyzer(Version.LUCENE_40);

5

6 public static void main (String[] args) throws IOException{

7

8 String spellCheckDir = "E:\\RISIndex\\Justiz\\WordIndex";

9 String indexDir = "E:\\RISIndex\\Justiz";

10 String indexField = "Suchworte";

11

12 // Create Lucene index for dictionary

13 FSDirectory dir = FSDirectory.open(new File(indexDir));

14 IndexWriterConfig config = new

IndexWriterConfig(Version.LUCENE_40, analyzer);

15 config.setOpenMode(OpenMode.CREATE);

16 writer = new IndexWriter(dir, config);

17

18 // Create dictionary on field Suchworte

19 FSDirectory spellDir = FSDirectory.open(new

File(spellCheckDir));

Lucene Content 97

20 SpellChecker spell = new SpellChecker(spellDir);

21 IndexReader r = DirectoryReader.open(FSDirectory.open(new

File(indexDir)));

22 try {

23 spell.indexDictionary(new LuceneDictionary(r, indexField),

config, false);

24 } finally {

25 r.close();

26 }

27 }

28 }

B.7 Faceting

Listing 20: Category

1 List categories = new ArrayList();

2 categories.add(new CategoryPath("Gericht",

rs.getString("Gericht")));

3 CategoryDocumentBuilder categoryDocBuilder = new

CategoryDocumentBuilder(taxoWriter);

4 categoryDocBuilder.setCategoryPaths(categories);

5 categoryDocBuilder.build(doc);

Listing 21: Faceting

1 public static void faceting (String indexDir, String taxoDir,

String q)

2 throws Exception{

3 IndexReader indexReader =

DirectoryReader.open(FSDirectory.open(new File(indexDir)));

4 IndexSearcher searcher = new IndexSearcher(indexReader);

5 TaxonomyReader taxoReader = new

DirectoryTaxonomyReader(FSDirectory.open(new File(taxoDir)));

6

7 Query parser = new QueryParser(Version.LUCENE_40, "Suchworte",

analyzer).parse(q);

8 TopScoreDocCollector tdc = TopScoreDocCollector.create(10, true);

9

10 FacetSearchParams facetSearchParams = new FacetSearchParams();

11 facetSearchParams.addFacetRequest(new CountFacetRequest(

12 new CategoryPath("Gericht"), 10));

Lucene Content 98

13 FacetsCollector facetsCollector = new FacetsCollector(

14 facetSearchParams, indexReader, taxoReader);

15

16 searcher.search(parser, MultiCollector.wrap(tdc,

facetsCollector));

17 List<FacetResult> res = facetsCollector.getFacetResults();

18 }

B.8 Synonyms

Listing 22: Synonyms

1 public class Synonyms {

2

3 public static void main(String[] args) {

4

5 String base1 = "fast";

6 String syn1 = "rapid";

7

8 // Define synonyms

9 SynonymMap.Builder sb = new SynonymMap.Builder(true);

10 sb.add(new CharsRef(base1), new CharsRef(syn1), true);

11

12 // Create synonyms

13 SynonymMap synonym = null;

14 try {

15 synonym = synonym = sb.build();

16 } catch (IOException e) {

17 e.printStackTrace();

18 }

19

20 // Apply synonym filter on token stream

21 Tokenizer tokenizer = new

WhitespaceTokenizer(Version.LUCENE_40, new

StringReader("INPUT TEXT"));

22 SynonymFilter filter = new SynonymFilter(tokenizer, synonym,

true);

23 }

24 }

Lucene Content 99

B.9 Segmentation

Listing 23: Segmentation

1 public class MultiFieldFilter extends TokenFilter{

2

3 private final CharTermAttribute termAtt;

4 private final PositionIncrementAttribute posAtt;

5 private final OffsetAttribute offAtt;

6 private int position;

7

8 protected MultiFieldFilter(TokenStream input) {

9 super(input);

10 this.termAtt = addAttribute(CharTermAttribute.class);

11 this.posAtt = addAttribute(PositionIncrementAttribute.class);

12 this.offAtt = addAttribute(OffsetAttribute.class);

13 }

14

15 @Override

16 public boolean incrementToken() throws IOException {

17 if (!input.incrementToken()) return false;

18

19 // Position of the current token

20 position = posAtt.getPositionIncrement();

21

22 // Increase the distance between tokens when new line is

detected

23 if(termAtt.toString().equals("\n")){

24 posAtt.setPositionIncrement(position+10);

25 }

26 return true;

27 }

28 }

Listing 24: Span Query

1 SpanQuery[] span = new SpanQuery[]{

2 new SpanTermQuery(new Term("ID", term1)),

3 new SpanTermQuery(new Term("ID", term2))};

4

5 SpanNearQuery sq = new SpanNearQuery(span, 2, true);

Lucene Content 100

B.10 Canonisation

Listing 25: Canonisation

1 public class CanonicalFilter extends TokenFilter{

2

3 private final CharTermAttribute termAtt;

4 private final PositionIncrementAttribute posAtt;

5 private final OffsetAttribute offAtt;

6 private int position;

7 private State savedState;

8 private LinkedList<String> tokens = new LinkedList<String>();

9

10 protected CanonicalFilter(TokenStream input) {

11 super(input);

12 this.termAtt = addAttribute(CharTermAttribute.class);

13 this.posAtt = addAttribute(PositionIncrementAttribute.class);

14 this.offAtt = addAttribute(OffsetAttribute.class);

15 }

16

17 @Override

18 public boolean incrementToken() throws IOException {

19 // Add token from the list to the current position

20 if (!tokens.isEmpty() && termAtt.toString().equals("�7

ABGB")) {

21 restoreState(savedState);

22 termAtt.setEmpty().append(tokens.remove());

23 return true;

24 }

25

26 // Save the current position of the token and add token to a

list

27 if(input.incrementToken()){

28 if(termAtt.toString().equals("ABGB 7�")){

29 tokens.add(termAtt.toString());

30 savedState = captureState();

31 }

32 return true;

33 }

34 return false;

35 }

36 }

Lucene Content 101

B.11 Custom Analyzer

Listing 26: Custom Analyzer
1

2 public class CustomAnalyzer extends Analyzer{

3

4 protected TokenStreamComponents createComponents(String

fieldName, Reader reader) {

5

6 StandardTokenizer tokenizer = new

StandardTokenizer(Version.LUCENE_40, reader);

7 TokenFilter filter = new StandardFilter(Version.LUCENE_40,

tokenizer);

8 filter = new LowerCaseFilter(Version.LUCENE_40, filter);

9

10 // Remove german stop words

11 filter = new StopFilter(Version.LUCENE_40, filter,

GermanAnalyzer.getDefaultStopSet());

12

13 // Normalizatiion of tokens

14 filter = new GermanNormalizationFilter(filter);

15 // stemming

16 filter = new GermanLightStemFilter (filter);

17

18 // Custom filters

19 filter = new CanonicalFilter(filter);

20 filter = new MultiFieldFilter(filter);

21

22 return new TokenStreamComponents(tokenizer, filter);

23 }

24 }

B.12 Entity Extraction

Listing 27: Multiple Analyzers
1 Map<String,Analyzer> analyzerPerField = new HashMap<String,Analyzer

>();

2 analyzerPerField.put("SuchworteFacet", new EntityExtractionAnalyzer

());

3 PerFieldAnalyzerWrapper aWrapper = new PerFieldAnalyzerWrapper(new

GermanAnalyzer(Version.LUCENE_40), analyzerPerField);

Lucene Content 102

Listing 28: Entity Extraction Analyzer

1 public class EntityExtractionAnalyzer extends Analyzer{

2 @Override

3 protected TokenStreamComponents createComponents(String field,

Reader reader) {

4 Pattern p = Pattern.compile("(0[1-9]|[12][0-9]|3[01])[-

/.](0[1-9]|1[012])[- /.](19|20)\\d\\d");

5 PatternTokenizer tokenizer = null;

6 try {

7 tokenizer = new PatternTokenizer(reader, p, 0);

8 } catch (IOException e) {

9 e.printStackTrace();

10 }

11 return new TokenStreamComponents(tokenizer);

12 }

13 }

Mindbreeze Content 103

C Mindbreeze Content

C.1 Query Expansion

Listing 29: Query Transformer

1 public class MyTransformer

2 extends QueryExprTransformationServiceProtos.

QueryExprTransformationService

3 {

4 private static final Logger logger = Logger.getLogger(MyTransformer

.class);

5

6 public void transform(RpcController rpcController,

QueryExprTransformationServiceProtos.

QueryExprTransformationRequest request, RpcCallback<

QueryExprTransformationServiceProtos.

QueryExprTransformationResponse> done)

7 {

8 try

9 {

10 logger.info("input:" + request.getQueryExpr());

11 QueryExprProtos.QueryExpr transformedQueryExpr =

transformQueryExpr(request.getQueryExpr());

12 logger.info("transformed:" + transformedQueryExpr);

13 QueryExprTransformationServiceProtos.

QueryExprTransformationResponse.Builder responseBuilder =

QueryExprTransformationServiceProtos.

QueryExprTransformationResponse.newBuilder();

14 responseBuilder.setQueryExpr(transformedQueryExpr);

15 QueryExprTransformationServiceProtos.

QueryExprTransformationResponse response = responseBuilder.

build();

16 done.run(response);

17 }

18 catch (Exception e)

19 {

20 throw new RuntimeException(e);

21 }

22 }

23

24 QueryExprProtos.QueryExpr transformQueryExpr(QueryExprProtos.

QueryExpr expr)

Mindbreeze Content 104

25 {

26 if ((expr.getKind() == QueryExprProtos.QueryExpr.Kind.

EXPR_LABELED) && (expr.hasNamedExpr()))

27 {

28 if ("Paragraph".equalsIgnoreCase(expr.getNamedExpr().getLabel()

)) {

29 if ((expr.getNamedExpr().hasExpr()) && (expr.getNamedExpr().

getExpr().getKind() == QueryExprProtos.QueryExpr.Kind.

EXPR_QUOTED_TERM))

30 {

31 QueryExprProtos.QueryExpr.Labeled labeled = expr.

getNamedExpr();

32 QueryExprProtos.QueryExpr paragraph_ziel = QueryExprHelper.

labeled("Paragraph", QueryExprHelper.term(labeled.

getExpr().getQuotedTerm().replace(" ", "")));

33

34 return QueryExprProtos.QueryExpr.newBuilder(expr).

setNamedExpr(QueryExprProtos.QueryExpr.Labeled.

newBuilder(labeled).setLabel("Paragraph").setExpr((

QueryExprProtos.QueryExpr)transformOnlyFieldsOfMessage(

paragraph_ziel))).build();

35 }

36 }

37 if (("title".equalsIgnoreCase(expr.getNamedExpr().getLabel()))

&&

38 (expr.getNamedExpr().hasExpr()) && (expr.getNamedExpr().

getExpr().getKind() == QueryExprProtos.QueryExpr.Kind.

EXPR_QUOTED_TERM))

39 {

40 QueryExprProtos.QueryExpr.Labeled labeled = expr.getNamedExpr

();

41 QueryExprProtos.QueryExpr ziel = QueryExprHelper.labeled("

title", QueryExprHelper.regexPattern(labeled.getExpr().

getQuotedTerm().replace("_", ".").replace("*", ".*")));

42

43 return QueryExprProtos.QueryExpr.newBuilder(expr).

setNamedExpr(QueryExprProtos.QueryExpr.Labeled.newBuilder(

labeled).setLabel("title").setExpr((QueryExprProtos.

QueryExpr)transformOnlyFieldsOfMessage(ziel))).build();

44 }

45 }

46 return (QueryExprProtos.QueryExpr)transformOnlyFieldsOfMessage(

expr);

Mindbreeze Content 105

47 }

48

49 private Message transformMessageAndFields(Message inputMessage)

50 {

51 if (QueryExprProtos.QueryExpr.getDescriptor().equals(inputMessage

.getDescriptorForType())) {

52 return transformQueryExpr((QueryExprProtos.QueryExpr)

inputMessage);

53 }

54 return transformOnlyFieldsOfMessage(inputMessage);

55 }

56

57 private Message transformOnlyFieldsOfMessage(Message inputMessage)

58 {

59 Message.Builder builder = inputMessage.newBuilderForType().

mergeFrom(inputMessage);

60 for (Map.Entry<Descriptors.FieldDescriptor, Object> entry :

inputMessage.getAllFields().entrySet()) {

61 if (((Descriptors.FieldDescriptor)entry.getKey()).getType() ==

Descriptors.FieldDescriptor.Type.MESSAGE) {

62 if (((Descriptors.FieldDescriptor)entry.getKey()).isRepeated

())

63 {

64 Collection<?> collection = (Collection)entry.getValue();

65 List<Object> transformed = new ArrayList();

66 for (Object msg : collection) {

67 transformed.add(transformMessageAndFields((Message)msg));

68 }

69 builder.setField((Descriptors.FieldDescriptor)entry.getKey

(), transformed);

70 }

71 else if (QueryExprProtos.QueryExpr.getDescriptor().equals(((

Descriptors.FieldDescriptor)entry.getKey()).getMessageType

()))

72 {

73 QueryExprProtos.QueryExpr expr = (QueryExprProtos.QueryExpr

)entry.getValue();

74 builder.setField((Descriptors.FieldDescriptor)entry.getKey

(), transformQueryExpr(expr));

75 }

76 else

77 {

Mindbreeze Content 106

78 builder.setField((Descriptors.FieldDescriptor)entry.getKey

(), transformOnlyFieldsOfMessage((Message)entry.getValue

()));

79 }

80 }

81 }

82 return builder.buildPartial();

83 }

84 }

RIS Content 107

D RIS Content

D.1 Database Bundesnormen

Name Type Description

BundesnormenDokument Table This table contains all meta-
data for a document

BundesnormenDokumentDaten Table Contains the unstructured
documents in their respective
format

BundesnormenDokumentNative Table A document can consist of
several parts. Each of those
parts has an entry in this ta-
ble

BundesnormenHistory Table Shows the modi�cation his-
tory

BundesnormenHistoryDocument Table Contains the original data
BundesnormenIndexItem Table Contains all index data in or-

der to guarantee a fast search
BundesnormenNutzdaten Table Contains the text of the docu-

ments
VersionInfo Table This table contains the cur-

rent version of the application,
which can be used in update
scripts and queries

BundesnormenSuchworteView View This view consists of a com-
bined text that includes all
metadata �elds and the all at-
tributes from the Bundesnor-
menNutzdaten table

BundesnormenTitelView View Contains all parts of the title
necessary for a full text query

Table 22: Database Bundesnormen

RIS Content 108

D.2 Queries

Requirement Query

Right wildcard Suchworte:Radfahrstreifen*
Multiple wildcard Suchworte:Arbeitnehmer*schutz*
Near Search Suchworte:Fahrbahnen nahe Radfahrstreifen
Combined Search 01 Suchworte:Fahrstreife* nahe Radfahrstreifen*
Combined Search 02 "Suchworte:((Abwasser und Anlage) oder

Verordnung) nahe Emission Titel: Milch"
Special Characters Suchworte:�3
Numbers Gliederungszahl:001*
Metadata and Full-text
Search

"Suchworte:Buddhismus Titel:Lehrplan und Re-
ligion"

Di�erent Spelling 01 Paragraph:1a
Di�erent Spelling 02 Paragraph:1 a
Word Delimiter "Geschäftszahl:OEA14/72 Suchworte:�3 "
Boolean: AND Suchworte:Bund und Gericht
Boolean: OR Suchworte:Bund oder Gericht
Boolean: NOT Suchworte:Bund nicht Gericht
Range Query "Titel:Asylgesetz Paragraph:32a bis 33b"
Group of Words Suchworte:BGBl I
Group of Words includ-
ing Stop Words

Suchworte:"der bürger"

Segmentation Norm:ZPO Abs1
Canonisation 01 Norm:ABGB �7
Canonisation 02 Norm:�7 ABGB
Global Search Suchworte:gerichtshof

Table 23: RIS Queries

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Structure

	Preliminaries
	Index
	Search Queries
	Ranking
	Evaluation Methods
	Additional Methods and Techniques
	Implementations

	RIS - The Austrian Legal Information System
	Access and Design
	Architecture
	Data and Search
	Requirements

	Evaluation of Search Engines
	Selection of Search Engine
	Lucene - Open-Source Search Engine
	Mindbreeze - Commercial Search Engine

	Technical Characteristics
	Lucene
	Mindbreeze

	Implementation of Requirements
	Evaluation

	Accessibility and Enrichment of Search
	Integration of External Sources
	Further Solutions

	Conclusion
	Preliminaries Content
	Hash Function

	Lucene Content
	Indexer
	Searcher
	Database Connection and Indexing
	Range Query
	Update
	Auto Corrections
	Faceting
	Synonyms
	Segmentation
	Canonisation
	Custom Analyzer
	Entity Extraction

	Mindbreeze Content
	Query Expansion

	RIS Content
	Database Bundesnormen
	Queries

