
Master Degree in Computer Science

Bootstrapping the Web of Data
with Drupal

by

Stéphane Jean Joseph Corlosquet

This thesis is submitted to the National University of Ireland, Galway, in fulfillment of
the award of M.Sc. in Computer Science.

Supervisor: Dr. Axel Polleres
Digital Enterprise Research Institute

National University of Ireland, Galway

Director: Prof. Dr. Stefan Decker
Digital Enterprise Research Institute

National University of Ireland, Galway

Galway, July 31th, 2009

1

Contents

1 Introduction 2

2 Preliminaries 7
2.1 History and Pre-Existing Work on Content Management Systems . . . 7
2.2 Semantic Web Technologies . 9

2.2.1 RDF . 9
2.2.2 Ontologies and Vocabularies 12
2.2.3 Querying RDF with SPARQL 16

2.3 RDF serialization formats . 19
2.3.1 RDF/XML . 19
2.3.2 RDFa . 19
2.3.3 Notation3 . 20
2.3.4 Turtle . 21
2.3.5 N-Triples . 21

2.4 Vocabulary publishing on the Semantic Web 21
2.4.1 The value of vocabularies 22
2.4.2 Current approaches to vocabulary publishing 23

2.5 Linked Data . 24
2.6 Content Management Systems and RDF support 25

2.6.1 Content Management Systems 25
2.6.2 CMSs and RDF support . 27
2.6.3 Details on Drupal . 27

3 Solutions to connect Drupal to the Web of Data 34
3.1 From Content Models to Site Vocabularies 36

3.1.1 Building a Site Vocabulary 36
3.1.2 Adhering to Linked Data principles 38

3.2 Mapping Content Models to Existing Ontologies 38
3.2.1 External vocabulary importer module 39
3.2.2 External ontology search service 39
3.2.3 Mapping process . 40
3.2.4 User experience . 42

3.3 Exposing and Consuming Linked Data with SPARQL 43
3.3.1 Exposing RDF data with a SPARQL endpoint 44

2

3.3.2 Consuming Linked Data by lazy loading of remote RDF re-
sources . 45

4 User Evaluation and Adoption of the Implemented Solutions 46
4.1 Usability . 46
4.2 Adoption . 47

5 Minimal RDF Support for Drupal Core 49
5.1 RDF Schema proposal . 49
5.2 Implementation for Drupal Core 7 51

5.2.1 RDF Mapping Definition . 51
5.2.2 RDFa output . 52

6 Neologism: Easy RDFS vocabulary publishing 54
6.1 Architecture . 54
6.2 User experience . 55
6.3 Adoption . 56

7 Conclusions and Outlook 58

A Namespaces 68

B Drupal RDF Content Construction Kit evaluation 69
B.1 Introduction . 69
B.2 Content Construction Kit . 69
B.3 Setting up the content model . 70

B.3.1 Content types . 70
B.3.2 Fields . 71

B.4 Map the Content Model to RDF terms 72
B.5 Drupal RDF Content Construction Kit evaluation - Questionnaire . . . 73
B.6 Drupal RDF Content Construction Kit evaluation - RDF Mappings . . 74

3

List of Figures

2.1 Basic RDF statements. 11
2.2 Basic RDF graph. 11
2.3 RDF Graph merge . 12
2.4 Blank node graph . 12
2.5 RDFS graph representing a simple hierarchy of classes. 14
2.6 Graph representing RDFS entailment rules. 15
2.7 Notation 3 classification (from [12]). 20
2.8 The Linking Open Data cloud (2009). 24
2.9 Web Content Management Systems comparison (from [60]). 27
2.10 Hierarchy of contributors on a typical Drupal site 30
2.11 User profile page built with Drupal’s CCK. 31
2.12 Administration page of the Person content type in Drupal’s CCK. . . . 32
2.13 List of fields of the Person content type in Drupal’s CCK. 32
2.14 Defining constraints on the gender field in Drupal’s CCK. 33

3.1 Graph of a set of restrictions on a class. 37
3.2 RDF mappings management through the Drupal interface: RDF class

mapping (left) and RDF property mapping (right). 43
3.3 Form for importing an external vocabulary (left) and confirmation mes-

sage after a vocabulary import (right). 43
3.4 Extended example in a typical Linked Data eco-system. 44
3.5 A list of SPARQL results (left) and an RDF SPARQL Proxy profile

form (right). 45

4.1 Comparison between initial setup and RDF mappings. 47
4.2 Evolution of the number of installations of RDF CCK since its release. 48

5.1 Drupal RDF Schema proposal. 50

6.1 A vocabulary page in Neologism, as it appears to an authenticated user. 55
6.2 A form for editing a class. 56
6.3 The vocabulary overview diagram. 57

4

Abstract

Content Management Systems (CMS), blogging tools, and other Internet applica-
tions such as wikis are the basis for the explosion of web content available on the
Internet today. Each of these system implements its own structure for processing and
storing the information depending on the specific requirements and platform it was
built for, thus locking the information in a data silo. One of the main problems with so
much disparate data appears when it comes to sharing, reusing, merging or exporting
this data across various platforms or applications. The lack of unified semantics for
describing this data make these processes rather cumbersome and operose. The Re-
source Description Framework (RDF) provides a solution to solve this problem with a
unified, standardized language to describe resources on the Web in a machine-readable
format, therefore enabling the smooth exchange of information and knowledge on the
Semantic Web.

This thesis describes a set of tools which expose the huge amounts of Web content
residing in CMS systems to the Web of Data. We implement our approach in one of the
most popular CMS systems nowadays, Drupal, where we enable site administrators to
export their site content to the Web of Data without requiring extensive knowledge on
Semantic Web technologies. This becomes possible by mapping the inherent site struc-
ture to a lightweight ontology that we call the Site Vocabulary, and exposing site data
directly in RDF. Of itself, this simple solution would not link to existing Semantic Web
data, since site vocabularies exist decoupled from the widely used vocabularies in the
Linked Data cloud. To close this gap, we suggest an easy-to-use and fail-safe ontology
import and reuse mechanism allowing site administrators to link their site vocabulary,
and thus their site data, to existing widely used vocabularies on the Web. Moreover,
we make all this data available in a SPARQL endpoint, allowing other parties on the
Internet to execute complex queries against the content of a site. Reversely, taking ad-
vantage of the existing Linked Data on the Web, we allow site administrators to include
data from remote SPARQL endpoints on their site. Finally, to cater to those willing to
define their own vocabularies, we propose a tool for authoring and publishing RDF
vocabularies online.

We believe that our approach will help to bootstrap the Web of Data by leveraging
the huge amounts of information contained in CMSs. In approaching site administra-
tors rather than end users, we tackle the problem of adding semantics where we con-
sider it easiest: Semantics are fixed at design time based on the site structure and, as a
result, users entering data produce Linked Data automatically without extra burden.

Acknowledgements
First of all, I want to give my sincere gratitude to Dr. Axel Polleres who supervised
me and provided me with his wise guidance during the course of my Masters at DERI
Galway. I would like to thank my colleagues Nuno Lopes, Thomas Krennwallner,
Dr. Antoine Zimmerman and Dr. Gergely Lukácsy for their expertise and entertaining
conversations on Description Logics, OWL, emacs and Latex. Thanks to Dr. Alexan-
dre Passant, Dr. Michael Hausenblas, Dr. Bart Gruzalski and Nuno Lopes for their
valuable feedback on my thesis. Thanks to VinhTuan Thai, Tudor Groza, Sheila Kin-
sella, Aidan Hogan, Knud Möller, Laura Dragan, Gabriela Vulcu, Wassim Derguech,
Georgeta Bordea and Jürgen Umbrich who helped with the evaluation of some of the
solutions presented in this thesis.

Let me thank, in no particular order, Cosmin Basca, Stefan Bischof, Dr. James
Cooley, Renaud Delbru, Andrew Gallagher, Benjamin Heitmann, Dr. Andreas Harth,
Richard Cyganiak, Dr. John Breslin, Deirdre Lee, Julie Letierce, Peyman Nasirifard,
Alexander Schutz, Thomas Schandl and Sergio Fernández who all participated in one
way or another in the success of my Master at DERI Galway. I want to also thank
DERI at large, post-graduate students, post-doc researchers and related staff for their
kind aid and advice.

A special thanks to Dr. Eyal Oren, Dr. John Breslin and Prof. Dr. Stefan Decker
who gave me the opportunity to work at DERI and without whom I would have not
have been able to experience this great journey.

I am grateful to Tim Clark who invited me to visit Harvard’s Initiative in Innova-
tive Computing, as well as Sudeshna Das for supervising me during my stay in Cam-
bridge. I want to thank Marco Neumann for giving me the opportunity to speak at
the New York City Semantic Web Meetup, as well as Lee Feigenbaum, Lalana Ka-
gal and Oshani Seneviratne for arranging the various meetups at MIT. I would like to
thank Sir Tim Berners-Lee and his group for their feedback on the solutions presented
in this thesis. Moreover, I want to thank all the people who made my journey in the
US a great one: Benjamin Melançon, Kathleen Murtagh and the Agaric Design team,
Jonathan Hendler, Cameron Freer, Eric Prud’hommeaux, Greg Rundlett, Patty Kopperl
and Morton Swimmer.

I would like to thank the Drupal developers who participated in the RDF code
sprint, namely, Florian Loretan, Rolf Guescini, Benjamin Melançon, Stefan Freuden-
berg, Frédéric G. Marand, Mark Birbeck, John Morahan and Dr. John Breslin. Many
thanks to the Drupal community at large from which I have learnt a great deal and who
provided a solid, practical testbed for the tools described in this thesis.

Finally I would like to thank my wife Diliny De Alwis Corlosquet for her constant
support and great patience when I had to work overnight, on week-ends or on holidays,
and my family Hervé, Martine, Thérèse and Jérôme Corlosquet for their belief in me
and aid despite the distance between us.

The work presented in this thesis has been funded in part by Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Lion-2) and the European FP6 project in-
Context (IST-034718).

1

Chapter 1

Introduction

Since the late 90ies and early 2000s a paradigm shift has taken place in Web pub-
lishing towards a separation of data (content) and structure (mainly layout). The first
ideas to have the data represented in a way which allows its reuse in various ways and
not only HTML, emerged in parallel in various systems such as Typo3 (1997), Plone
(1999), WebML [21]. These open source systems and their commercial counterparts
are nowadays typically subsumed under the common term Content Management Sys-
tems (CMS).

While it is worthwhile to mention that the first of these systems appeared at around
the same time as Semantic Web technologies emerged, with Resource Description
Framework RDF [41] being standardized in 1999, the development of CMS and Se-
mantic Web technologies have gone largely separate paths. Semantic Web technolo-
gies have matured to the point where they are increasingly being deployed on the Web,
hereby forming a Data Web or Web of Data. But the HTML Web still dwarfs this
emerging Web of Data and – boosted by technologies such as CMS – is still growing
at much faster pace than the Semantic Web.

This is a pity, since actually both worlds could significantly benefit from each other.
Particularly, large amounts of RDF data can now be accessed over the Web as Linked
Data and built into Web applications [31]. Linked Data is a method for exposing
connected data on the Web via dereferenceable URIs. This data is used by a variety
of clients and in RDF data mashups that integrate information from various sources,
search engines that allow structured queries across multiple sites and datasets, and data
browsers that present a site’s content in new ways. The task of “RDFizing” existing
web sites, which contain structured information such as events, personal profiles, rat-
ings, tags, and locations, is important and of high potential benefit. While the Web
features some huge websites with millions of pages and users, a lot of the Web’s inter-
est and richness is in the “long tail”, in smaller special-interest websites.

Despite the fact that the need for dynamic inclusion and export of structured data in
websites is widely recognized readily available support for exporting and consuming
Linked Data in CMS systems – especially for non-experts – is still lacking. At present,
RSS feeds are the only agreed way to share and syndicate data across websites. How-
ever, the RSS format is very poor and limited when it comes to semantics. It was

2

designed to carry news information, but it is today being employed for carrying other
types of information due to the fact that users are unaware of compelling alternatives
such as Linked Data. We believe RDF is a good candidate for improving interoperabil-
ity between sites for the following reasons: RSS can only carry a flat list of news item,
while RDF can express any structured data and – by RDFS and OWL – even describe
its own structure. Moreover, it offers a structured query language and protocol in or-
der to extract and retrieve selected data that match a set of criteria, whereas with RSS,
one first needs to fetch an entire feed and then process it locally to extract the needed
information.

Hypothesis It is remarkable that although most common CMS system support RSS,
RDF is still being largely ignored as a much richer potential syndication format; espe-
cially, since CMSs are typically built on a structured model of the domain of the site
which is reflected in both the underlying database, but – also and often more accurately
– in the content types defined in the CMS system itself by a site administrator. It is
reasonable to assume that this structured models map naturally to RDFS and OWL.
Additionally, the recently standardized RDFa [1] format could support the exposure of
structured data on CMS by allowing RDF to be embedded directly into the exposed
HTML pages, as opposed to a separate document (like in RSS). Hence RDFS, OWL
and RDFa seem to be more adequate means to expose machine-readable Linked Data
on Web sites. Likewise, the consumption and aggregation of Linked Data on a CMS
site offer new possibilities further described in this thesis. Approaching site adminis-
trators of widely used CMSs with easy-to-use tools to enhance their site with Linked
Data will not only be to their benefit, but also significantly boost the Web of Data.

Approach We present several modules for Drupal – a state-of-the art CMS which
has been gaining popularity recently by its rapidly growing user community, openness
and modular design – to enable Linked data exposure and consumption.

Contributions
This section lists the various contributions which were made in the course of this thesis.

Drupal Modules
Several modules have been contributed to the Drupal community and are listed below.

RDF CCK (http://drupal.org/project/rdfcck) is an extension for Dru-
pal which allow to link back this content model to the Web of Data. After in-
stalling this module on an existing Drupal site, the content types and fields typi-
cally defined by a Drupal site administrator using Drupal’s Content Construction
Kit (CCK) will be automatically exposed in terms of classes and properties of a
canonical OWL ontology, the site vocabulary. The site data itself can become

3

available as RDFa embedded in the live website following Linked Data princi-
ples. While this off-the-shelf solution already makes any Drupal site which in-
stalls our module amenable to Semantic Web tools such as RDF crawlers, search
engines, and SPARQL engines to search and query the site, this is only a first
step.

RDF external vocabulary importer (http://drupal.org/project/evoc)
For better linkage to the Web of data, we enable mappings of the site vocabulary
to existing, widely used ontologies. To this end, this module extends CCK by
means to import existing vocabularies and map the local terms to external ones.
To keep the burden low for site administrators who normally have little interest
in learning details of RDF and OWL, we support safe reuse, i.e. in linking con-
tent types and fields to existing classes and properties we avoid modifications of
existing ontologies.

RDF SPARQL Endpoint (http://drupal.org/project/sparql ep) Upon
simple installation of this module, the site data can – on top of the RDFa data
on the HTML pages exposed by the CMS – additionally be exposed with a stan-
dard SPARQL query interface, following the standard SPARQL protocol. This
module is based on the PHP ARC2 library.1

RDF SPARQL Proxy (http://drupal.org/project/rdfproxy) We allow
administrators to dynamically integrate data from other RDF enhanced Drupal
sites or Linked Data producers by an RDF SPARQL Proxy module.

Neologism (http://neologism.googlecode.com/) Neologism is an online
vocabulary editor and publishing system based on Drupal,2 implemented in PHP
and ActionScript, and reduces the time required to create, publish and modify
RDF vocabularies.

Drupal Core A list of patches to integrate minimal RDF support in Drupal core 7 is
available at http://drupal.org/project/issues/search/drupal?
issue tags=RDF.

Results Dissemination and Community Work
Part of the work described in this thesis involved some dissemination tasks to raise
awareness about the Semantic Web technologies and make these solutions available to
and used by as many people as possible.

Talks

• Social Networking Techniques and Potential presentation at DrupalCon Barcelona
on September 21st, 2007 (http://barcelona2007.drupalcon.org/
node/438). Report on the session available at http://openspring.net/
blog/2007/09/24/great-success-of-the-semantic-web-at-drupalcon.

1http://arc.semsol.org/
2http://drupal.org/

4

• SIOC, the Semantic Web and Drupal at the Drupal Austria Meetup on March
12th, 2008 in Vienna (http://groups.drupal.org/node/9466).

• Drupal and the Semantic Web: the Neologism project presentation at DrupalCon
Szeged on August 30th, 2008 (http://szeged2008.drupalcon.org/
program/sessions/drupal-and-semantic-web-neologism-project).

• New York City Semantic Web Meetup on February 26th, 2009 (http://semweb.
meetup.com/25/calendar/9630332/). “Drupal Semantics” presenta-
tion the RDF CCK and Evoc modules. Video available at http://www.
vimeo.com/4427060, post event interview at http://vimeo.com/5024015
and a blog post from a member of the audience at http://semanticalley.
com/2009/02/27/144/.

• New York City DrupalCamp on February 28th, 2009 (http://groups.drupal.
org/node/18467). “Drupal Semantics” presentation the RDF CCK and Evoc
modules.

• RDF Bird of a Feather gatherings at the DrupalCon Washington DC on March
5th/6th, 2009 (http://dc2009.drupalcon.org/). Wrap up including
slides available at http://groups.drupal.org/node/19927, list of
participants and use cases at http://groups.drupal.org/node/19734.

• Cambridge Semantic Web gathering at MIT Stata center on March 10th, 2009
(http://esw.w3.org/topic/CambridgeSemanticWebGatherings/
Meeting/2009-03-10 Gathering). Presentation on Drupal, RDF CCK
and Evoc.

• Decentralized Information Group meeting at MIT on March 26th, 2009. Presen-
tation of Drupal, RDF CCK, Evoc and Neologism to Tim Berners-Lee and his
group.

• RDF in Drupal Core code sprint (http://groups.drupal.org/node/
21469) organized at DERI on June 11th-14th 2009 gathered nine Drupal devel-
opers to work on integrating a lightweight RDF API in Drupal core.

• Presentation on RDF in Drupal at the IKS Requirements Workshop (http://
www.iks-project.eu/requirements-workshop) in Salzburg, Aus-
tria on May 28-29th, 2009 , interview at http://www.vimeo.com/5214999.

Online discussions and advocacy

• Manager of the Semantic Web group on Drupal.org: http://groups.drupal.
org/semantic-web created in September 2007.

• RDFa in Drupal - examples and use cases screencast (http://groups.drupal.
org/node/20167 which was shown at the DrupalCon DC 2009 on March
10th.

5

• Drupal Voices 18: Stéphane Corlosquet on the Semantic Web & Drupal inter-
view with Lullabot available at http://www.lullabot.com/drupal-voices/
drupal-voices-18-st%C3%A9phane-corlosquet-semantic-web-drupal.

• Drupal RDF Schema proposal discussion available at http://groups.drupal.
org/node/9311.

• A roadmap for RDFa in Drupal 7 discussion available at http://groups.
drupal.org/node/16597.

Publications
Workshop papers

• Cosmin Basca, Stéphane Corlosquet, Richard Cyganiak, Sergio Fernández and
Thomas Schandl, Neologism: Easy Vocabulary Publishing. In Proceedings of
the Workshop on Scripting for the Semantic Web Workshop at ESWC2008,
Tenerife, Spain, 2008. Available at http://www.semanticscripting.
org/SFSW2008/papers/10.pdf

• Stéphane Corlosquet, Richard Cyganiak, Axel Polleres and Stefan Decker, RDFa
in Drupal: Bringing Cheese to the Web of Data. In 5th Workshop on Scripting
and Development for the Semantic Web at ESWC2009, Crete, Greece. Available
at http://www.semanticscripting.org/SFSW2009/short 3.pdf

Technical Reports

• Stéphane Corlosquet, Richard Cyganiak, Stefan Decker, Axel Polleres Semantic
Web Publishing with Drupal. DERI, 2009. Available at http://www.deri.
ie/fileadmin/documents/DERI-TR-2009-04-30.pdf

Structure
The rest of this thesis is structured as follows. We will begin by introducing some pre-
liminaries in Chapter 2. These will be useful to understand the details of the solutions
we implemented and which are further detailed in Chapter 3. We will also look at the
adoption of our solutions, along with a user evaluation in Chapter 4. To facilitate the
adoption of our approach, a minimal RDF support for Drupal core will be proposed
in Chapter 5. The Neologism project, a more advanced solution for RDF vocabulary
publishing, will be presented in Chapter 6. Finally, we will conclude in Chapter 7 with
an outlook on future work and a use case for our approach.

6

Chapter 2

Preliminaries

In this chapter, we will first set our approach into context with some history and related
work in Section 2.1 – as we will see the Semantic Web and CMSs have crossed paths
various times in the past years, still we emphasize the complementary nature of our
approach. Sections 2.2 and 2.4 will describe some of the technologies and aspects of
the Semantic Web relevant for this thesis. Finally in Section 2.6, we will look at various
Content Management Systems and their relation to RDF.

2.1 History and Pre-Existing Work on Content Man-
agement Systems

Staab et al. [57] proposed – at a stage where CMSs as we know them today were still
in their infancy – what could be conceived as an ontology based CMS. The idea was to
separate Web Content from domain models, very similar to the core ideas that made the
success of CMSs. Similarly, Ontowebber [36] promoted the creation of Websites out
of ontologies with a system built on a native RDF repository. These approaches though
focus on ontologies and ontology design themselves as a backbone to organise data
on Web sites. On the contrary, CMSs typically support very lightweight structuring
of information items supported by user interfaces limited to the needed functionality
to structure data for Web presentation, rather than full ontology editing tools. More-
over, current CMS typically rely on off-the-shelf relational databases to store data on
the backend, rather than RDF repositories. Our module for Drupal thus has a very
orthogonal goal: rather than building an ontology-based CMS we aim to extract and
link ontologies from the content models and within the tools that typical site admin-
istrators are familiar with nowadays. We belief that this strategy – taking users from
where they are in an unobtrusive way – to be the key enabler to leverage Semantic Web
technologies with low entry barriers.

Somewhat closer to our approach are the ideas presented by Stojanovic et al. [58],
where a relational database schema underlying a CMS is mapped to RDF Schema or
Frame Logic. KnoBot[6] is a CMS entirely based on RDF by Reto Bachmann-Gmür.
A more recent approach of Database-level RDF exporters – Triplify [4] – follows

7

a similar path, providing a generic mapping tool for lifting relational databases into
Linked Data by dedicated mappings from a relational Schema to RDF. It requires un-
derstanding of database technologies and of the application’s internal database schema.
It should be mentioned that Triplify even provides some predefined mappings to wrap
Drupal sites’ backend databases into RDF. Again, our approach is significantly differ-
ent. Due to the flexible nature of Drupal the underlying database used to store the data
underlying a CMS based site does not necessarily reflect the sites content model and its
constraints. Thus, the relational schema might vary between different versions of Dru-
pal on the one hand, and on the other hand, the effects of changing the content model
to the database schema underneath by the site administrator are not always obvious.
Actually, a good part of the success of CMSs is grounded precisely in the fact that site
administrators do not need to delve into details of the underlying database system or
schema. Our approach works on a more abstract level directly in the UI/API the site
administrator is used to, where all the information about the content model is available,
which we believe to model the information structure more adequately than the under-
lying database schema. The administrator does not need to know anything about the
underlying database to create mappings to existing RDF vocabularies or expose RDFa
on her site.

SIOC exporters and similar fixed-schema RDF generators cannot deal with the case
where the site schema and its mapping into RDF terms is defined by the site admin-
istrator at setup time. Semantic MediaWiki1 and similar systems such as the Semantic
Forms extension2 or UfoWiki [50] address a different use case: all content authors,
rather than just the site administrator, collaboratively define the structure of the site.
We address the common case where the site’s basic structure should not be changed by
individual content authors.

A main difference to Semantic Wikis is that these typically provide semantic an-
notations at editing, i.e. by the content providers themselves, whereas in CMS the
administrator and content provider roles are typically more clearly separated. We aim
at providing semantic annotations at design time for the site administrator, but - addi-
tionally - also enabling posteriori annotation of existing Drupal sites, which becomes
possibly by the flexibility of Drupal’s module system. In principle, our approach is
also applicable to Semantic Wikis with some adaptions, but we envision with target-
ting CMS a much broader audience. It is worth highlighting the survey [53] carried
out by the W3C RDB2RDF Incubator Group which includes a more exhaustive list of
approaches for mapping of relational databases to RDF.

Finally, none of the above works provide an all-in-one solution for exporting, ag-
gregating and mapping Linked Data from within a commonly used CMS. This is what
distinguishes our work which is tailored for easy of use.

As for pre-existing work specifically in Drupal, a recent paper [23] describes the
related SCF (Science Collaboration Framework) Node Proxy architecture. This mod-
ule, developed specifically for biomedical applications, enables RDF from defined
SPARQL queries to be mapped to specific Drupal content types. These mappings must
be generated individually per content type - Node Proxy is not a general RDF-to-Drupal

1http://semantic-mediawiki.org/wiki/Semantic MediaWiki
2http://www.mediawiki.org/wiki/Extension:Semantic Forms

8

mapping facility, it does not support CCK, and it is read-only (into Drupal from Linked
Data). Nonetheless, it was a significant first step along the path we develop further and
more generally here. The Node Proxy architecture is currently used to retrieve Gene
information from a common RDF store for StemBook,3 an open access review of stem
cell biology. It will be superseded in the SCF Drupal distribution by the much more
general and fully-featured modules we describe here. We will provide more details on
the SCF use case in Section 4.

2.2 Semantic Web Technologies

2.2.1 RDF
The core technology on which the Semantic Web is based is the Resource Description
Framework [39], a metadata model language for describing resources on the web. RDF
became a W3C recommendation in 2004. As opposed to HTML which is tailored for
displaying information for the human, RDF is designed to be read and understood by
machines, so that independent parties can exchange data and seamlessly interoperate
in an open world assumption. Typical applications of RDF range among other things
from describing books and their authors, editors and publishers, to represent people,
their relationship to each other and their online content. All these information can be
merged together and can be viewed as global database: the Giant Global Graph [10].

URIs

In the context of the global web, each resource on the web must be identified by a
unique pointer called a Uniform Resource Identifier (URI), which is a string of charac-
ters following the RFC3986 [11]. A URI can identify web documents like Web pages,
but also concepts or things of the real world, like a person, a country or an idea. URIs
allow disambiguation of terms which can have several meanings, for example in the
case of ’apple’:

<http://dbpedia.org/resource/Apple>
<http://dbpedia.org/resource/Apple_Corps>
<http://dbpedia.org/resource/Apple_Inc.>
<http://dbpedia.org/resource/Apple_Macintosh>
<http://dbpedia.org/resource/Apple_Valley>
<http://dbpedia.org/resource/Apple_River>

where the URIs respectively identify the fruit, the music band, the company, the com-
puter model, the valley and the river.

Sometimes in order to keep the notation shorter, prefixes will be used. This tech-
nique is taken from the Turtle [8] specification. As an example, the URI

<http://xmlns.com/foaf/0.1/name>

3http://www.stembook.org/

9

can be broken down into a base URI <http://xmlns.com/foaf/0.1/> which
can be declare as prefix foaf and the RDF term name. The original URI can then be
shortened to foaf:name, as long as the prefix is specified as follows:

@prefix foaf: <http://xmlns.com/foaf/0.1/>

See Appendix A for a list of prefixes and their respective namespaces used in this thesis.

RDF statement and RDF graph

RDF describes resources with properties and property values. An RDF statement is the
combination of 3 elements:

• a subject: the RDF resource which is being described and generally identified
by a URI.

• a property or predicate: a resource with a name such as author or knows
taken from an RDF vocabulary.

• an object: the value of the property – sometimes called property value – which
can be either a literal like “Stéphane Corlosquet” or another resource.

Natural language statements such as (1) “I know Axel Polleres” and (2) “My name
is Stéphane Corlosquet” can be easily represented in RDF, as depicted in the figure 2.1.
It is important to differentiate these two types of statements where the object can ei-
ther be another resource (top) or a literal (bottom). Although both objects could be
perceived as names in natural language, they in fact are of different types: in the first
statement (1), http://www.polleres.net/foaf.rdf#me is used as an iden-
tifier for the person whose name is Axel Polleres, while in the second statement (2),
“Stéphane Corlosquet” is used as a literal value for the name. A literal is a value of
type string, integer, boolean, date, etc. In RDF, there exists two types of literals:

• Plain literals are composed of a lexical form and optionally a language tag as
defined by RFC-3066,4 normalized to lowercase. Examples of plain literal are
"garçon"@fr and "�H�%� M"@si .

• Typed literals are composed of a lexical form and a datatype URI being an RDF
URI reference. An example is "13.4"∧∧xsd:float.

All literals have a lexical form being a Unicode[2] string, which should be in Normal
Form C.5

An RDF graph gets naturally constructed by cumulating several RDF statements,
such as on the figure 2.2. Note the rdf:type property which allows to specify that
both resources me and Axel Polleres belong to the class foaf:Person.

To make it easier to differentiate resources and literals in RDF graphs, it is common
practise to represent resources in ovals and literals in rectangles. Another best practise

4http://www.isi.edu/in-notes/rfc3066.txt
5http://www.unicode.org/unicode/reports/tr15/

10

:me http://www.polleres.net/foaf.rdf#mefoaf:knows

:me "Stéphane Corlosquet"foaf:name

Figure 2.1: Basic RDF statements.

:me http://www.polleres.net/foaf.rdf#mefoaf:knows

"Stéphane Corlosquet"

foaf:name

"Axel Polleres"foaf:name

foaf:Person

rdf:type
rdf:type

Figure 2.2: Basic RDF graph.

on the syntax level is to use capitalized terms for classes (ex. Person) while properties
start with a lower case as in knows or name. These recommendations will be used
in this thesis. The Turtle syntax (detailed in Section 2.3) will be used in most of the
examples of this thesis.

In RDF semantics[33], RDF graphs are said to be directed, as they contain edges
giving each relation (property) a specific direction. Any RDF graph can be decomposed
in subgraphs. A subgraph is a subset of triples from the original graphs. This notion
will be used later to define the concept of named graph in SPARQL queries in the
section 2.2.3. It is also possible to merge RDF graphs together which produces a new
graph as shown on the figure 2.3. This is possible thanks to the flexibility of RDF and
unique URIs which are valid across applications and web documents, thus enabling
interoperability on the Web of Data. The URI of the graph that contains each statement
is sometimes added as fourth element in order to show its provenance: this element is
called context or graph. Such a structure is referred to as quad or quadruple.6

Blank nodes and ground graphs

Sometimes called bnode or anonymous node, a blank node represents a resource that
is not currently identified by a URI. There can be two reasons why the URI is absent:
either (1) the value is meaningless and will therefore never exist, or (2) it could ex-
ist but it is currently missing and might be defined later. Most of the time, it is used
to represent resources about which information is incomplete such as a person whose

6http://sw.deri.org/2008/07/n-quads/

11

merged graph

my FOAF file

Axel's FOAF file

:me

http://www.polleres.net/foaf.rdf#me

foaf:knows

"Stéphane Corlosquet"

foaf:name

"Axel Polleres"

foaf:name

http://polleres.net/

foaf:homepage

"Axel Polleres"

foaf:name

http://polleres.net/

foaf:homepage

:me

foaf:knows

"Stéphane Corlosquet"foaf:name

http://www.polleres.net/foaf.rdf#me

http://www.polleres.net/foaf.rdf#me

Figure 2.3: RDF Graph merge

identifier is unknown but may be defined by other properties like a name, a homepage,
an email address, a phone number as shown in the figure 2.4. Essentially, blank nodes
allow to talk about resources without having to know their identifier. Typically, im-
plemented systems like the Redland API [9] will assign randomly chosen identifiers
to bnodes such as :genid274952. However these identifiers are not URIs and are
only valid within the system implementing it. A graph containing no blank node is
called a ground graph.

"Stéphane Corlosquet"
foaf:name

tel:+353876765830
foaf:phone

mailto:stephane.corlosquet@deri.org

foaf:mbox

http://openspring.net/

foaf:homepage

Figure 2.4: Blank node graph

2.2.2 Ontologies and Vocabularies
An ontology is formal representation of a set of concepts within a domain and how
they relate to each others. Ontologies usually include the following elements:

• Individuals: instances constituting the basic components of an ontology, which
can be concrete entities like people, animals, buildings, plants, as well as more

12

abstract individuals such as numbers and words. The latter group is sometimes
included in the classes rather than individuals.

• Classes: concepts also called type, sort, category or kind, which are abstract
groups, sets or collections of objects. A class can be subsumed by another class
and is then called subclass of the parent class (superclass). Any member of the
subclass will automatically be member of the parent classes. The consequence is
that a subclass will inherit the properties of the parent (subsuming) class. In some
ontologies, a class is only allowed to have one parent, while in most ontologies,
multiple parent classes are allowed. One example of multiple inheritance is the
a Kitten which could be a subclass of Cat and a subclass of Predator: as a result,
the class Kitten would inherit the properties of the class Cat (species, color) and
of the class Predator (has prey).

• Attributes: aspects, properties, features, characteristics, or parameters that ob-
jects and classes can have. These attributes can be either a class or an individual.
The value of an attribute can be a complex data type. In our example of the
kitten, the attribute gender can only be one of the list {male, female}.

• Relations: ways in which objects of an ontology can be related to one another.
A relation is of a particular type (class). The subsumption relation (superclass)
is the most important one, which allows to built hierarchical tree-like structure
where each object is the child of a parent class. Another type of relation is the
meronymy relation (part of) used to relates objects which are combined to form
composite objects.

Small, lightweight ontologies are sometimes called vocabularies. Ontologies typi-
cally comprise a much bigger set of terms than vocabularies – sometimes thousands of
terms – and are therefore much more complex to design, create and maintain. They are
also more expressive than vocabularies. In a nutshell, the term vocabulary is usually
used to refer to simple, small, lightweight ontologies with limited expressivity.

Vocabularies and ontologies are commonly used in the Semantic Web to structure
and describe the data available as RDF. Domain making use of ontologies are among
others: healthcare, pharmaceutics, biomedical, library science, artificial intelligence,
etc.

RDF Schema

As explained previously, RDF describes resources with properties, values and classes.
However it does permit to define application specific classes and properties. RDF
Schema [19] is an extension to RDF which provides a framework to describe such
custom classes and properties. Subclasses of classes can also be defined, forming hier-
archies of classes (taxonomies) as shown in the example of figure 2.5 inspired from the
Semantic Web for Research Communities ontology.7 These classes can then be instan-
tiated in application specific RDF graphs. Classes in RDF can be compared to classes
in object oriented programming languages but also show significant differences [48].

7http://swrc.ontoware.org/ontology#

13

Publication

Thesis

rdfs:subClassOf rdfs:Class

rdf:type

rdf:type

Book

rdfs:subClassOf

MasterThesis

rdfs:subClassOf

PhDThesis

rdfs:subClassOf

rdf:type

rdf:type

rdf:type

Figure 2.5: RDFS graph representing a simple hierarchy of classes.

Moreover, the rdfs:domain and rdfs:range properties provide a way to
specify what type (class) of resources can be used as subject or object of an RDF
statement. In the case of foaf:knows, both domain and range are foaf:Person
(a foaf:Person can only know another foaf:Person). Another example is
foaf:firstName whose domain is foaf:Person and range is a literal (the first
name of a person must be a string). According to the RDF Semantics [33], RDFS
entailment rules can be applied to infer extra triples as illustrated on Figure 2.6:

• Transitivity of rdfs:subClassOf The thesis “Technologies du Web Séman-
tique pour l’Entreprise 2.0” is typed as PhDThesis, which is a subclass of Thesis
and Publication entails that the thesis is also of type Thesis and Publication.

• Range According to the FOAF specification [20], the range of the foaf:maker
property is foaf:Agent, which entails that <http://apassant.net/al-
ex> is of type foaf:Agent.

• Domain FOAF [20] specifies that the domain of the foaf:firstName prop-
erty is foaf:Person, which entails that <http://apassant.net/alex>
is of type foaf:Person.

Domain specific classes and properties are grouped together to form what is called
RDF Vocabularies. FOAF,8 SKOS,9 SIOC10 are just a few of them. Because of the
flexibility of RDF, terms defined in one vocabulary can be reused in another vocabulary,
and subclasses of well know classes can be created where appropriate. Reusing existing
vocabularies and specializing it to your application domain is encouraged in order to

8http://foaf-project.org/
9http://www.w3.org/2004/02/skos/

10http://sioc-project.org/

14

rdfs:subClassOf

PhDThesis

rdfs:subClassOf

Technologies du Web
Sémantique pour l'Entreprise 2.0

rdf:type

rdf:type

rdf:type

inferered triple

http://apassant.net/alex

foaf:maker

Thesis

Publication

foaf:Agent

foaf:Person

Alexandre

foaf:firstName

rdfs:subClassOf

rdf:type

rdf:type

rdfs:range

rdfs:domain

Figure 2.6: Graph representing RDFS entailment rules.

enable interoperability between applications, this is the reason why RDF vocabularies
are published on the web. They are typically available in machines-readable format
(RDFS) as well as human-readable format (HTML) to provide a reference to users
willing to understand the vocabulary and eventually reuse it. The Neologism project [7]
was created to make it easier the process of authoring and publishing vocabularies on
the web using the latest standards in terms of content negotiation and dereferenceable
URIs. Neologism will described in more details in Chapter 6.

OWL

Several ontology languages exist: OWL [24], OWL 2 [29], KIF [28], CycL [43],
RIF [18] and F-Logic [37]. The most well known is the Web Ontology language (OWL)
which is built on top of RDF and RDFS for representing knowledge on the web. It is
also based on older ontology language projects like OIL, DAML and DAML+OIL.
OWL was designed to be used on the Internet and all its objects are defined as RDF
and identifiable by URIs.

An OWL ontology contains a set of axioms which define some constraints on the
individuals and the types of relationship between them. By providing these semantics,
they allow systems to infer new knowledge from the data explicitly provided.

Some features of OWL which we will use later are as follows; this list is not meant
to be exhaustive:

• Properties. OWL makes the distinction between two main categories of proper-
ties:

1. Object properties link individuals to other individuals and are defined as
instances of the owl:ObjectProperty class;

15

2. Datatype properties link individuals to data values and are defined as in-
stances of the owl:DatatypeProperty class.

Both owl:ObjectProperty and owl:DatatypeProperty are subclasses
of rdf:Property.

• Multiple Domain. A property can be defined as having multiple classes act-
ing as domain by forming a union of all these classes with the owl:unionOf
property.

• Multiple Range. In RDFS, a property can already have multiple range axioms.
OWL further allows to restrict rdfs:ranges of properties to enumeration or
complex class definitions, for instance a property can range over:

1. a class of type owl:DataRange using the owl:oneOf construct with a
enumerated list of data values;

2. a complex class description, e.g. the owl:unionOf, owl:intersec-
tionOf, etc. a set of classes.

• Cardinality constraints. In RDF, a given instance can have an arbitrary amount
of values for a particular property. In OWL, the cardinality of a property can be
restricted to:

1. a maximum number of values with owl:maxCardinality;

2. a minimum number of values with owl:minCardinality;

3. a fixed number of distinct values with owl:cardinality;

By using a combination of these construct, one can specify that a property is re-
quired (at least one value), a specific number of values must exist or that a prop-
erty must not occur. Note that a property constraint such as cardinality is defined
within a class context by subsuming this class with an owl:Restriction,
see Figure 3.1 for an example.

2.2.3 Querying RDF with SPARQL
In the previous sections we have discussed how to describe data in a uniform way with
RDF as well as its structure with RDFS and OWL. We will now look at how to query
this data.

SPARQL Protocol and RDF Query Language (SPARQL) [51] is a query language
designed to allow querying over disparate RDF data sources. SPARQL has been stan-
dardized by the RDF Data Access Working Group (DAWG) of the W3C in January
2008, and is now very well spread in the RDF implementations. The features and ratio-
nale of the next version of SPARQL are currently being discussed at [38]. A SPARQL
query consists of triple patterns, conjunctions, disjunctions, and optional patterns.

With SPARQL it is possible to extract values from structured and semi-structured
data, perform complex joins across different databases and explore data by querying
initially unknown relationships, all in a single query.

A basic SPARQL query can be written as follows:

16

SELECT ?title
FROM <http://example.org/book/book1>
WHERE
{
<http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> ?title .

}

This query is composed of a SELECT clause identifying the variables to appear in
the query results, a FROM clause indicating the dataset to be queried, and the WHERE
clause providing the basic graph pattern to match against the data graph. Variables in
SPARQL start with a “?” or a “$”. The graph pattern of this example above is very
simple and consists of a single triple pattern with a single variable ?title in the object
position. Only the bindings for this variable will be returned.

The SPARQL query processor is the server-side application which will do all the
work of searching for the results over the databases involved in the query. During the
execution of a SPARQL query, a typical processor will:

• fetch external RDF data defined in the FROM or FROM NAMED clauses, or
alternatively directly evaluate the query on the default dataset stored in a local
RDF store;

• search for the subgraphs matching the graph pattern in that data;

• bind the variables of the query to the corresponding parts of matching triple(s).

Some implementation of SPARQL processor are available: ARQ (Jena),11 Open-
link Virtuoso,12 Sesame 2,13 ARC2,14 etc.

In order to make queries more readable and shorter, SPARQL allows the definition
of prefixes similarly to the Turtle notation as shown earlier in the section 2.2.1. Prefixed
names following the syntax prefix:name can then used in the SPARQL query. Note
that the prefix can be empty such as in the case:

PREFIX : <http://example.org/book/> .
PREFIX dc: <http://purl.org/dc/elements/1.1/title> .
SELECT ?title
WHERE
{
:book1 dc:title ?title .

}

SPARQL queries examples

Assuming the store against which this query is executed contains the following triples:

<http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> \
"The Social Semantic Web" .
<http://example.org/book/book1> <http://purl.org/dc/elements/1.1/creator> \
"John Breslin" .
<http://example.org/book/book2> <http://purl.org/dc/elements/1.1/title> \
"RESTful Web Services" .

11http://jena.sourceforge.net/ARQ/
12http://www.openlinksw.com/virtuoso/
13http://www.openrdf.org/
14http://arc.semsol.org/

17

The triples matching the graph pattern of the query above is

http://example.org/book/book1 <http://purl.org/dc/elements/1.1/title> \
"The Social Semantic Web" .

and after binding the variable ?title, the results of the query are:

title
“The Social Semantic Web”

To show the flexibility of SPARQL, let us query the graph above and retrieve all the
titles of the books. This is done simply by changing the query pattern as the following:

PREFIX : <http://example.org/book/> .
PREFIX dc: <http://purl.org/dc/elements/1.1/title> .
SELECT ?title
WHERE
{
?book dc:title ?title .

}

In this query we have 2 variables in the query pattern (?book and ?title) but
only one of these appears in the SELECT clause and will be binded to the results:

title
“The Social Semantic Web”
“RESTful Web Services”

It is also possible to have more complex query patterns such as the following query
which retrieve all the books and optionally their author:

PREFIX : <http://example.org/book/> .
PREFIX dc: <http://purl.org/dc/elements/1.1/title> .
SELECT ?title
WHERE
{
?book dc:title ?title .
OPTIONAL { ?book dc:author ?author }

}

Note the SELECT clause now contains 2 variables. The results would be:

title author
“The Social Semantic Web” “John Breslin”
“RESTful Web Services”

In addition to the SELECT queries, SPARQL supports three other query types.
ASK simply returns ”yes” if the query’s graph pattern has any matches in the dataset
and ”no” otherwise. DESCRIBE returns a graph containing information related to the
nodes matched in the graph pattern. Finally, CONSTRUCT is used to output a graph
pattern for each query solution, which allows a new RDF graph to be created directly
from the results of the query. It can be used to convert RDF data from one schema to
another.

18

2.3 RDF serialization formats
Several RDF serialization formats have been designed over the past years to publish
RDF online. They all share the same characteristic which is to represent the same RDF
data but written (serialized) in different formats.

2.3.1 RDF/XML
RDF/XML is the most widespread format supported by all RDF parsers. It is an XML
based serialization of RDF. It has been introduced in 1999 as part of the W3C spec-
ification of the RDF’s data model and is therefore sometimes called RDF, which can
sometimes lead to confusion: it is important to distinguish the XML format from the
abstract RDF model itself. Its Internet Media Type is application/rdf+xml.

The RDF/XML format is known to be verbose and not easily readable for humans:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="http://en.wikipedia.org/wiki/Tony_Benn">
<dc:title>Tony Benn</dc:title>
<dc:publisher>Wikipedia</dc:publisher>

</rdf:Description>
</rdf:RDF>

2.3.2 RDFa
RDFa [1] is a set of extensions to XHTML which permits to embed RDF within HTML
directly, hence the name RDFa: Resource Description Framework - in - attributes.
RDFa became a W3C Recommendation in October 2008. Its recommended Internet
Media Type is application/xhtml+xml.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"

"http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
version="XHTML+RDFa 1.0" xml:lang="en">

<head>
<title>John’s Home Page</title>
<base href="http://example.org/john-d/" />
<meta property="dc:creator" content="Jonathan Doe" />

</head>
<body>
<h1>John’s Home Page</h1>
<p>My name is John D and I like
<a href="http://www.neubauten.org/" rel="foaf:interest"
xml:lang="de">Einstrzende Neubauten.

</p>
<p>
My favorite
book is the inspiring <cite
property="dc:title">Weaving the Web</cite> by
Tim Berners-Lee

</p>
</body>

</html>

19

Because RDFa adds RDF terms to the HTML code directly, it has some advantages
when it comes to User Interface for example, where it becomes possible to trigger
specific events or layout depending on the meaning of a piece of HTML code. Some
argue that RDFa adds more markup to Web pages, making them heavier to download
and process,15 however this overhead can be reduced by optimizing the page load with
gzip for example. Specific tools can help with this task.16

2.3.3 Notation3
Notation3[12], or N3, is a shorthand non-XML serialization of RDF. It is a class of
several RDF formats whose relations are represented in Figure 2.7. Its Internet Media
Type is text/n3;charset=utf-8.

Figure 2.7: Notation 3 classification (from [12]).

15http://buytaert.net/rdfa-and-drupal#comments
16See for example YSlow developed by Yahoo!: http://developer.yahoo.com/yslow/

20

An example of N3 RDF data can read:

@prefix dc: <http://purl.org/dc/elements/1.1/>.

<http://en.wikipedia.org/wiki/Galway>
dc:title "Galway";
dc:publisher "Wikipedia".

2.3.4 Turtle
Turtle (Terse RDF Triple Language) [8] is a subset of Notation 3 for expressing RDF
data only (without the N3 rules). It is commonly used for its easy readability and is
also very short. Its Internet Media Type is text/turtle.

2.3.5 N-Triples
N-Triples is a line-based, plain text serialisation format for RDF graphs. It is a subset
of the Turtle format. Because it is line based, it makes it easy to parse and combine
files or portions of files, since each line independent from each other as opposed to
the RDF/XML format or Turtle which can include some nested resources. Its Internet
Media Type is text/plain.

The N-Triples statements below are equivalent to this RDF/XML:
#
<rdf:RDF xmlns="http://xmlns.com/foaf/0.1/"
xmlns:dc="http://purl.org/dc/terms/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<Document rdf:about="http://www.w3.org/2001/sw/RDFCore/ntriples/">
<dc:title>N-Triples</dc:title>
<maker>
<Person rdf:nodeID="art">
<name>Art Barstow</name>
</Person>
</maker>
<maker>
<Person rdf:nodeID="dave">
<name>Dave Beckett</name>
</Person>
</maker>
</Document>
</rdf:RDF>

<http://www.w3.org/2001/sw/RDFCore/ntriples/> <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
<http://xmlns.com/foaf/0.1/Document> .

<http://www.w3.org/2001/sw/RDFCore/ntriples/> <http://purl.org/dc/terms/title> "N-Triples" .
<http://www.w3.org/2001/sw/RDFCore/ntriples/> <http://xmlns.com/foaf/0.1/maker> _:art .
<http://www.w3.org/2001/sw/RDFCore/ntriples/> <http://xmlns.com/foaf/0.1/maker> _:dave .

_:art <http://www.w3.org/1999/02/22-rdf-syntax-ns#> <http://xmlns.com/foaf/0.1/Person> .
_:art <http://xmlns.com/foaf/0.1/name> "Art Barstow".

_:dave <http://www.w3.org/1999/02/22-rdf-syntax-ns#> <http://xmlns.com/foaf/0.1/Person> .
_:dave <http://xmlns.com/foaf/0.1/name> "Dave Beckett".

2.4 Vocabulary publishing on the Semantic Web
Section 2.2.2 introduced vocabularies as one key concept of the Semantic Web. This
section further emphasize their value and present some existing approaches to vocabu-

21

lary publishing.
Anyone who wants to publish information as RDF on the Semantic Web first faces

the choice of which RDF Schema vocabulary or OWL ontology to use. Some ar-
eas, such as social networks (FOAF), online communities (SIOC) or general docu-
ment metadata (DC) are covered by established vocabularies. Outside of these do-
mains, registries like SchemaWeb17 and search services like Falcons Concept Search18

or Swoogle [26] assist in the task of finding vocabularies for niche topics, but what
they find might be of insufficient quality, or might not cover all required terms, and at
present many areas of interest are not covered by any vocabulary at all.

In summary, most efforts to publish information on the Semantic Web first require
an effort to create, extend or modify an RDF Schema vocabulary or OWL ontology.
But this is a complex and time-consuming task in itself. It involves:

• creating the formal specification of the vocabulary in RDFS or OWL,

• writing documentation that is clear and helpful for users of the ontology,

• keeping both documents in sync as the vocabulary evolves,

• archiving older versions of the documents,

• defining and maintaining mappings to related vocabularies,

• configuring the web server in accordance with W3C best practices [15].

2.4.1 The value of vocabularies
When we speak of vocabularies, we mean simple, “lightweight” ontologies, such as
FOAF, DC, SIOC and SKOS. Expressivity is typically limited to RDF Schema plus
selected OWL features, e.g. inverse functional properties and class disjointness. Their
value is in providing common terminology for exchanging information between pro-
grams. The actual information is in the RDF instance data that is expressed with the
vocabulary’s terms, while in more complex ontologies, the actual information lies in
the definitions of the classes and properties. A vocabulary is created by publishing a
description of its terms in natural using HTML or formal using RDFS/OWL language.
Since classes and properties are identified by URIs, it is considered a good practice to
make these URIs resolvable [14, 15]. This enables clients to look up definitions of the
vocabulary terms, with the following benefits:

• Information publishers can refer to a specification. This is important to create
interoperability around a vocabulary. The top ten most popular vocabularies of
2006 all have a such a specification.19

• RDF-aware tools such as data browsers (e.g. Tabulator [14]), SPARQL query
builders and RDF instance editors can use the formal specification to improve

17http://www.schemaweb.info/
18http://iws.seu.edu.cn/services/falcons/conceptsearch/
19http://ebiquity.umbc.edu/resource/html/id/196/

22

the user experience, e.g. by showing friendlier labels and comments, listing
available terms and providing widgets appropriate to a property’s data type.

• Inference can be performed to increase recall when performing queries or lookups
against RDF data, which is especially useful when terms are mapped to other vo-
cabularies. Systems that use such techniques are the SWSE search engine [30,
35] and the Sindice semantic lookup index [47, 25].

2.4.2 Current approaches to vocabulary publishing
There exist various ways to author vocabularies which are described below.

Vocabulary maintenance with text editors and custom scripts. Many popular vo-
cabularies such as FOAF and SIOC are maintained by a process involving hand-authoring
of RDF and HTML files and custom scripts, e.g. SpecGen.20 Often, complex custom
web server configurations, e.g. in Apache, which is the most commonly used nowa-
days, are employed to follow best practices regarding content negotiation, MIME types
and resolvable URIs [15].

Offline ontology editors. OWL ontology editors such as Protégé [40],21 TopBraid
Composer22 and SWOOP23 can be used to create the formal specification of a vo-
cabulary. While being great tools for knowledge engineering professionals, these ap-
plications have a steep learning curve and they intimidate casual users. They use a
file-based, offline model, where ontology files are stored on the local user’s computer.
Remote publishing, if supported at all, is an after-thought.

Web-based systems. Powl [3] is a Semantic Web development platform for PHP
which handles the parsing, storing and serialization of RDFS and OWL knowledge
bases for advanced ontology management. OntoWiki [5] provides basic ontology edit-
ing, but its main focus is the display and editing of RDF instance data. IkeWiki [54]
allows to build an ontology from the annotations added to pages and links. MyOntol-
ogy [56] focuses on collaborative editing in a larger community, in the hope of creating
rich knowledge bases, while creation of simple vocabularies typically does not involve
many collaborating users. Knoodl24 is a hosted service with strong community features
and an easy-to-use vocabulary editor, but it does not publish created vocabularies with
resolvable URIs or according to best-practice guidelines.

We identify four points where we can simplify the process: (i) Instant web-based
publishing instead of file-based offline editing. (ii) Focus on a limited subset of RDFS
and OWL. (iii) No instance editing or browsing. (iv) Handling of HTTP details like
URI management, content negotiation and redirects within the web-based application.

20http://sioc-project.org/specgen
21http://protege.stanford.edu/
22http://www.topbraidcomposer.com/
23http://www.mindswap.org/2004/SWOOP/
24http://knoodl.com/

23

2.5 Linked Data
The term Linked Data describes a method for exposing, sharing and connecting data
on the Web via dereferenceable URIs. Tim Berners-Lee is the author of the four prin-
ciples governing Linked Data, which are published in the seminal Linked Data design
notes [13]. They read as follows:

1. Use URIs to identify things on the Web (resources),

2. Use dereferenceable HTTP URIs so that people and machine can look up these
URIs,

3. When looking up an URI, i.e. resolving an RDF resource URI as an HTTP URL,
provide useful information about the resource using standards such as RDF and
SPARQL,

4. Include links to other resources in order to enable the discovery of more data.

The recent release of a series of long awaited W3C standards like SPARQL, GRDDL
and RDFa, as well as the Linking Open Data community project25 has lead to a great
amount of datasets now available as Linked Data: in May 2009, the data sets contained
4.7 million RDF triples interlinked by around 142 million RDF links (cf. Figure 2.8).
Among these data sets, DBpedia26 – an RDF export of the large part of the structured
data available in Wikipedia – is one of the most well connected due to its generic na-
ture, the RDF export of the popular online citation index DBLP27 is also of interest as
we will use it later in our use case.

DERI TR 2009-07-26 5

2. All URIs should be dereferenceable, that is, using HTTP URIs [FGM+99] allows looking up
the an item identified through the URI;

3. When looking up an URI—that is, an RDF property is interpreted as a hyperlink—it leads
to more data, which is usually referred to as the follow-your-nose principle;

4. Links to other URIs should be included in order to enable the discovery of more data.

We note that in 2009, Tim Berners-Lee has slightly changed this wording: he added RDF explicitly
to the third principle—the discussions, if RDF is actually a core part of linked data are ongo-
ing15. Further, we note [Hau09] that (in contrast to the full-fledged Semantic Web vision)linked
data is mainly about publishing structured data in RDF using URIs rather than focusing on the
ontological level or inferencing. This simplification—just as the Web simplified the established aca-
demic approaches of Hypertext systems—lowers the entry barrier for data provider, hence fosters
a wide-spread adoption [Aye07].

From 2007 on, things evolved fast. A range of new and long-awaited W3C standards was
released (SPARQL, GRDDL, RDFa) and the the Linking Open Data community project16 was
kicked-off by Chris Bizer and Richard Cyganiak. The results now, in mid 2009,we have over 100
open data sets, incl. Wikipedia, Geonames, etc., providing over 4.7 billion RDF triples, interlinked
by approximately 142 million RDF links (cf. Fig. 2).

Figure 2: The Linking Open Data cloud (2009).

15http://cloudofdata.com/2009/07/does-linked-data-need-rdf/
16http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

Figure 2.8: The Linking Open Data cloud (2009).

25http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData/

26http://dbpedia.org/
27http://dblp.l3s.de/d2r

24

2.6 Content Management Systems and RDF support
In this section, we will present the Content Management Systems in general. Later we
will focus on the CMS which already have partially implemented some Semantic Web
technologies.

2.6.1 Content Management Systems
Content Management System [61] is a broad term defining an application used to create,
edit, delete and publish content in a consistent and structured way.

• Content is any type or unit of digital information or experiences, including text,
images, graphics, video, sound, documents, records. Content is delivered via a
medium such as the Internet, television, audio CDs, or DVDs. Any data stored
electronically could potentially be considered as content.

• Content Management is the effective management of the content listed above,
which combines rules, process and workflows. This management leads to a con-
sistent structure and organization of the content in a CMS.

• System is the tool or combination of tools that make such content management
possible in an efficient and effective way.

In this thesis we will specifically focus on the Web Content Management Systems
which produce content available on the Internet in the form of HTML but also RSS,
XML and other formats. They provide authoring functions designed to allow users with
very little knowledge to create, manage and publish content online in a very easy man-
ner. Compared to website builder applications like Adobe Dreamweaver or Mozilla
SeaMonkey, Content Management Systems allow non-technical users to make changes
directly on existing sites without requiring much training or specific software other
than a regular Internet browser.

The features most Content Management Systems include are the following.

• identification of all key users and their content management roles;

• the ability to assign roles and responsibilities to different content categories or
types;

• definition of workflow tasks for collaborative creation, often coupled with event
messaging so that content managers are alerted to changes in content (For ex-
ample, a content creator submits a story, which is published only after the copy
editor revises it and the editor-in-chief approves it.);

• the ability to track and manage multiple versions of a single instance of content;

• the ability to capture content (e.g. scanning);

• the ability to publish the content to a repository to support access to the content
(Increasingly, the repository is an inherent part of the system, and incorporates
enterprise search and retrieval.);

25

• separation of content’s semantic layer from its layout (For example, the CMS
may automatically set the color, fonts, or emphasis of text.).

Furthermore, CMSs are able to handle a lot of tasks in the background which would
be otherwise very time consuming and prone to errors like generating valid HTML
pages following predefined templates, exporting data in RSS format for aggregation in
other sites, etc.

Given the great variety of domains requiring a Content Management System in
today’s world, there is no single implementation able to deal efficiently with ever use
case. While some applications such as Wordpress focus on a very specific type of
content (blog entries), some other system are more general and flexible such as Drupal
or Joomla!, and can be tuned to meet the use case requirements.

Various licences are used to release the Content Management Systems: some of
them are proprietary (e.g. Sharepoint) but some others are Free and Open Source,
allowing anybody to access the code and contribute to the project. Sometimes the
dual licensing is used to cater to different audiences and benefits from several licences
conditions.

Wordpress

Wordpress28 is the most popular blogging platform currently in use. Because it is
targeted to a very specific usage and does not require much skill to be installed, it has
seen a excellent adoption among the bloggers.

Joomla!/Mambo

Joomla!29 is a powerful Open Source Content Management System for building pro-
fessional web sites easily. It is often the system of choice for small business or home
users who want a professional looking site that is simple to deploy and use.

Drupal

Drupal30 is a popular open-source content management system (CMS). It is among the
top three open-source CMS products in terms of market share [55]. Drupal facilitates
the creation of web sites by handling many aspects of site maintenance, such as data
workflow, access control, user accounts, and the encoding and storage of data in the
database.

Choosing a CMS

Choosing a CMS depends and the application needs and must be careful thought through.
The IBM Internet Technology Group released a series of tutorials [60] on the CMS
topic and included the following comparison chart.

28http://wordpress.com/
29http://www.joomla.org/
30http://drupal.org/

26

Figure 2.9: Web Content Management Systems comparison (from [60]).

2.6.2 CMSs and RDF support
The main RDF support we found for Wordpress is the RDF tools extension31 built by
Benjamin Nowack. It is based on Dan Brickley’s idea of SparqlPress32 and adds an
ARC-based RDF store and SPARQL endpoint to the Wordpress blogging system.

The main Semantic Web project we found for Joomla! is the light-weight RDF
syndication Google Summer of Code project33 by Dan Le Phuoc. It relies on an ar-
chitecture based on DERI Pipes [42] to process RDF data from Joomla! sites with the
syndication component installed.

Drupal has multiple Semantic Web modules which have been developed by various
members of the community over the past years. They are listed in Table 2.1. The main
RDF API module is the base module on top of which we have built our solutions which
are detailed further in Chapter 3.

2.6.3 Details on Drupal
For the reasons emphasized in the previous sections, we found Drupal to be the most
appropriate CMS to use in our work. Therefore we delve into more details on Drupal
6 below which will be required to further understand this thesis.

Since the first release in January 2001, Drupal has seen a great increase in its popu-
larity in the last years due to its ever growing community. While originally mostly used
by charities and non commercial organizations, Drupal has since then been adopted by
industry, ranging from companies like Sun, Yahoo! Research or Sony.34 Today Drupal
is used for personal sites, non profit as well as corporate and business sites. The amount

31http://bnode.org/blog/2008/01/15/rdf-tools-an-rdf-store-for-wordpress
32http://bzr.mfd-consult.dk/sparqlpress/
33http://developer.joomla.org/gsoc2008/semantic-web/

180-show-cases-of-light-weight-rdf-syndication-in-joomla.html
34For a list of well known Drupal sites, see http://buytaert.net/tag/drupal-sites

27

Name Status Description
RDF API alpha Enables the use of Resource Description Frame-

work (RDF) metadata on Drupal site.
Calais stable Integration with the Calais Web service.
File Framework alpha File management framework storing information

about the files in RDF.
Machine tags unstable Extends the taxonomy module to allows machine

tags which are exported in RDF.
MOAT unstable Integration with the MOAT service[49].
Relations alpha Provides an API for arbitrary node relationships

based on RDF.
Semantic Search unstable Faceted search front end for Drupal using an RDF-

store on the back end as search index.
SIOC stable Exports Drupal forum and blog posts as RDF us-

ing the SIOC vocabulary.
SPARQL alpha Allows to query SPARQL endpoints via Drupal.
Views Datasource alpha Allows exports of Drupal Views in various for-

mats like microformat and RDF.

Table 2.1: RDF related modules available for Drupal

of live Drupal sites on the Internet is estimated at more than 175.000 sites.35

The most well known features of Drupal are the following:

• Friendly URLs using Apache’s mod rewrite capability

• Easily extensible using Drupal’s module framework (The community has de-
veloped many useful modules that provide functions such as taxonomy display,
jabber authentication, private messages, bookmarks, and so on.)

• A personalization environment for individualized content and presentation based
on user preferences

• Role-based permission system to define access to the viewing and editing of
content

• Content is fully indexed to support search

• Drupal is written on top of a database abstraction layer, so the framework can be
easily extended to other database back ends

• Support for other content forms such as polls, threaded comments, and discus-
sions and content syndication

35According to the usage statistics for Drupal at http://drupal.org/project/usage/drupal.
These statistics are gathered from the Drupal sites which have the Update Status module enabled. This
module was introduced in Drupal 6 core. Therefore this number does not include many of the sites running
an older version of Drupal and represents an underestimate of the actual amount of Drupal sites populating
the Web,.

28

• Separation of content from styling in a templating system that uses HTML, CSS,
and PHP

• Administrative support for logging, analysis, and Web-based administration

• Online help and support

Drupal is easily extensible via modules which can alter the default behavior and
add extra functionalities. The Drupal eco-system is composed of the following.

• A core distribution Drupal core which is kept under permanent review by hun-
dreds of developers and has a restricted set of committers: 2 per branch. The
core provides basic APIs for the contributed modules to hook their code into.
The latest Drupal core version is 6.

• A plethora of more than four thousands contributed modules (plugins) which are
authored by various members of the Drupal community. A module is a set PHP
files to be downloaded on the server of a Drupal site. These files are automati-
cally detected by Drupal which will let them add or change some of its features
or behavior. These modules are available for download for free on Drupal.org.36

A typical Drupal site involves several types of contributors as shown on Figure 2.10.

Module developers write the PHP code which adds specific functionalities to a Dru-
pal site. The type of functionality a module can provide is very broad: improved user
interface, extra fields, enhanced search, different content display, various export for-
mats, extended statistics and much more.

Site administrators initially sets up a site by installing the core Drupal web appli-
cation and choosing from a large collection of modules that add specific functionality
to the site, such as improved user interface, enhanced search, various export formats,
extended statistics and so on. Site administrators need a fair bit of technical knowledge
to choose and configure modules, but usually do not write code. Also sometimes called
Drupal architects, they will maintain the site healthy, make sure its code base is kept up
to date against new security threats, and eventually add new functionalities depending
on the need of the users of the site.

Content authors produce the main content of the site. In some cases there might
be a need for moderators who will take care of reviewing the content and publishing
it. Some more complex workflow can be setup where several stages of reviews are
necessary for example.

Visitors sometimes can leave comments or rate the content of a site, although most
of the time, they simply read the content.

36See http://drupal.org/project/modules for an exhaustive list of modules available for
Drupal.

29

Module developers

Content authors and moderators

Site architects and administrators

Visitors

HTML crawlers
(Google, Yahoo!)

RDF crawlers
(Sindice, SWSE)

RDFa crawlers
(SearchMonkey)

Figure 2.10: Hierarchy of contributors on a typical Drupal site

Among these categories, the site administrators are key: they are the ones who have
a handle on both the data and its structure. Our approach targets the site administrators
at the module level where they have full control over the site, so that the rest of the
chain down to the simple visitors of the site can benefit from it. It enables the site
administrators to put their sites onto the Web of Data and integrate RDF data in their
sites. Nothing is changed for content authors making our approach as transparent for
most people. Normal visitors will not see any change but we enable a new kind of
visitor: those using RDF-enabled browsers, or machine clients that understand RDF.

The Content Construction Kit

Each item of content in Drupal is called a node. Each node has a title and a unique id
used internally to refer to the node. Each node gets a page typically published at the
URL http://site.com/node/{node id}. Nodes can be created, edited and
deleted by content authors. Some modules extend the nodes, for example a taxonomy
module allows assignment of nodes to categories, and a comment module adds blog-
style comment boxes to each node.

The Content Construction Kit (CCK) is one of the most popular and powerful mod-
ules used on Drupal sites. The reason for such a popularity is that it caters for one of
the most painful tasks of module developers and site administrators: content structure
and storage. It allows, via a User Interface, the site administrator to define types of
nodes, called content types, and to define fields for each of these content type. Fields
can be of various kinds such as plain text fields, dates, email addresses, file uploads, or
references to other nodes. Additional kinds of fields can be created programmatically
via modules.

The actual storage of the content type and its fields data is handle by the CCK API
which will optimize the storage of this data in the database depending on for instance
if the field can have multiple values or is shared by more than one content type.

When defining content types and fields, the site administrator has to provide the

30

following information: ID,37 label, and description for content types and fields. Addi-
tionally, CCK allows to specify the following constraints on fields:

• Cardinality: fields can be optional or required, and may have a maximum cardi-
nality.

• Domain: fields can be shared among one or more content types.

• Range: fields can be of type text, integer, decimal, float, date, file attachment,
or node reference; fields of type node reference can be restricted to nodes of
specific content types; fields of type text can be restricted to a fixed list of text
values.

Thus, site administrators use CCK to define a site-specific content model, which
is then used by content authors to populate the site. The focus of the work we are
presenting here is to expose the site content as RDF and the CCK site content model as
OWL ontologies.

Motivating example: the project blogs site

Throughout this site thesis we will use a running example to illustrate our approach:
a project blogs website38 contains various information about the researchers at DERI
and their collaborators, including their publications, blog posts and projects they work
for. Our goal is to expose the site data and structure in a machine-readable form as well
as pull in data available from the Linked Data cloud or other Drupal sites in order to
enrich the information displayed on the site.

Figures 2.11, 2.12, 2.13 and 2.14 show the typical look and feel of a Drupal page
and administrative interface for the Person content type, without our extensions in-
stalled. This content type offers fields such as name, homepage, email, picture, col-
leagues, blog url, current project, past project, publications, contributions.

Figure 2.11: User profile page built with Drupal’s CCK.

37a string containing lower case alphanumeric characters and underscores.
38Demo-site running on Drupal 6 is available at http://drupal.deri.ie/projectblogs/

31

An example of node (page) of the type Person is depicted on Figure 2.11 where all
the fields are listed with their respective values. These values are formatted depending
on the type of field they belong to, e.g. a value of type link such as for the field
homepage is a link to http://openspring.net/, a value of type Node reference
such as for the field colleagues will be a link to the page of Aidan Hogan for instance,
which is hosted on the same site. Note also the View and Edit links at the top which are
available to logged in users who have the permissions to edit the page.

Figure 2.12: Administration page of the Person content type in Drupal’s CCK.

Figure 2.12 presents the basic form of the Person content type. It does not contains
any information about the field but more general settings like the name of the content
type, whether it should allow comments, have revisions, etc.

Figure 2.13: List of fields of the Person content type in Drupal’s CCK.

The fields form for the Person content type is displayed on Figure 2.13. This form
allows to easily reorder the fields by a “drag and drop” technique, add new fields,
remove existing fields or access the configuration form for a field.

The configuration form for the field gender appears on Figure 2.14, where it can
be set as required. Its cardinality can be specified as well as, if appropriate, a list of
allowed values – in which case the form will present a drop list of choices for this field.

32

Figure 2.14: Defining constraints on the gender field in Drupal’s CCK.

Particularly, we will illustrate in the further sections how to extend the publications
field to automatically display a list of publications pulled from various data endpoints.

33

Chapter 3

Solutions to connect Drupal to
the Web of Data

Given a Drupal CCK content model consisting of content types, fields, and nodes that
instantiate the content types, let us discuss the best ways of representing it in RDF. We
consider the following features desirable for the RDF output which are in line with the
Linked Data principles and best practices [16]:

(i) Resolvable HTTP URIs for all resources, to take advantage of existing tools that
can consume Linked Data style RDF content. That is, when resolving URIs,
one should find machine-readable information describing the URI. On the one
hand in Drupal, typically URIs of the running site are simply URLs pointing to
Web pages, but on the other hand, each of these pages also represents a node
of a certain content type in the CCK content model. Thus, in our model, each
node becomes an RDF resource, and the HTML Web page describing the node
is enriched with RDFa [1] that reflect the links in the content model. That is, for
each node URI

• we add an rdf:type triple asserting class membership in a class repre-
senting the content type of the node to the page.

• we add a triple for each field displayed on the page where the predicate is a
property representing the field itself and the field value is either a datatyped
literal (for text, integer, decimal, float, or date fields) or the URI of the
respective node reference.

(ii) Expressing Drupal CCK constraints in RDFS + OWL. Constraints that are de-
fined on the types and fields (domains, ranges, cardinalities, disjointness) should
be automatically published as RDF Schema [19] or OWL [24] expressions. We
will enable this by an auto-generated site vocabulary that is linked from the site
and which describes all content type and field URIs as classes and properties
in an ontology that reflects exactly the constraints expressible in CCK. We will
explain this mapping in detail in Section 3.1 below.

34

(iii) Re-use of published ontology terms. To support sites talking about arbitrary
domains, pre-defined/auto-generated RDF classes and properties are most likely
insufficient. In fact, the default site vocabulary only comprises an isolated ontol-
ogy not related to the rest of the Semantic Web. In order to link content to ex-
isting ontologies, we have to provide a handle for the site administrator to select
terms from existing ontologies when setting up the content model. This requires
that sites may reuse/import vocabulary terms from common existing ontologies.
We will explain this in more detail in Section 3.1.

(iv) Safe vocabulary re-use. Mixing the content model constraints with constraints
of a published ontology might have unintended semantic effects, especially since
most site administrators will not be familiar with the details of the OWL seman-
tics. The system must prevent such effects as far as possible. Practical examples
are included in Section 3.1.

(v) Exposing a query interface. We rely on the SPARQL protocol [51] here, i.e. the
site should expose its data in a SPARQL endpoint associated with the site. This
should be easy to set up and should not be a burden for the site administrator.

(vi) Reuse of Linked Data. Where possible, linkage to other instances of the Linked
Data cloud should be defined.

(v) Vocabulary authoring The expressivity of the site vocabulary which is just re-
stricted to the content model of a site might not be enough for those who would
like to define her own vocabulary. To this purpose, we created a lightweight
vocabulary authoring tool implemented in Drupal: Neologism. As this tool is
not directly connected with the other modules, it will be described separately in
Chapter 6.

These features strike a balance between preserving as much information as pos-
sible from the original content model, keeping the barrier to entry low, and enabling
interoperability between multiple data publishers and consumers.

Integrating the above features in a such a system as Drupal is challenging for several
reasons:

No dedicated development staff. Site operators of smaller we sites are not expected
to “program” RDF export themselves, it has to be supported by adequate soft-
ware or plugins that fit in the typical Drupal site administration tools and mod-
ules, and that enable a one-click, low entry barrier solution to expose site content
in RDF.

Per-site schemas. The domain schema differs from site to site. The mapping from the
site’s schema to a corresponding RDF Schema or OWL ontology cannot be pre-
defined by a software developer; it must be defined by the site operator, and we
have to provide adequate support to reuse existing vocabularies and ontologies.

No ontologists. Site administrators will have little interest in learning the details of
RDF and description logics. The process of configuring RDF support has to be
simple and straightforward, or else it won’t be used.

35

We will now present our extensions for Drupal, which shall fulfill the goals outlined
above.

3.1 From Content Models to Site Vocabularies
Administrators use CCK to define a site-specific content model, which is then used
by content authors to populate the site. The focus of our work is to expose (i) such
CCK site content models as an OWL ontologies that reflect the site structure which the
designer had in mind and (ii) the site content as RDF data using this ontology.

We have implemented a Drupal module that enhances Drupal’s CCK with the abil-
ity to auto-generate RDF classes and properties for all content types and fields and
displaying RDFa triples on the site as outlined in item (i) above. Thereby we provide
zero-effort RDFa output for any Drupal site, as long as no mappings to well-known
public vocabularies are required. Further – besides the data – we can map CCK data
models to a fragment of OWL outlined, addressing (ii) as follows.

3.1.1 Building a Site Vocabulary
We build a so-called site vocabulary, i.e., an RDFS/OWL ontology which describes
the content types and fields used in the data model as classes and properties. It is
automatically generated and published on the site under the default namespace

http://siteurl/ns#
which we subsequently denote by the namespace prefix site:.

Firstly, the field and type names are extracted from field and type IDs from CCK,
such that – following common conventions – fields are assigned a property name start-
ing with a lower case character, and content types are assigned a class name starting
with an upper case character. Field and content type labels and descriptions are like-
wise exported as rdfs:labels and rdfs:comments. Here goes a typical content
type and field definition extracted from CCK into RDFS:

site:Person a rdfs:Class;
rdfs:label "Person";
rdfs:comment "Researchers in DERI and their collaborators";

site:fn a rdf:Property;
rdfs:label "First name";
rdfs:comment "First name of a Person";

Likewise, field constraints from CCK are reflected in the site vocabulary: Cardinal-
ity is mapped to cardinality restrictions in OWL, i.e. required fields are restricted to
owl:cardinality 1. whereas fields with a maximum cardinality n are restricted
to owl:maxCardinality n. For instance, if we assume that each Person is re-
quired to have a name field, works in at most 5 projects, these constraints in CCK
would be exported to OWL as follows.

36

site:Person a rdfs:Class; rdfs:subclassof
[a owl:Restriction;

owl:onProperty site:name;
owl:cardinality 1],

[a owl:Restriction;
owl:onProperty site:project;
owl:maxCardinality 5].

Figure 3.1 gives an illustrated view of this set of restrictions.

site:name

site:Person

rdfs:subClassOf
owl:onProperty

1

owl:cardinality

site:projectowl:onProperty

5

owl:maxCardinality

rdfs:subClassOf

Figure 3.1: Graph of a set of restrictions on a class.

Domains are reflected by rdfs:domain constraints. Here, fields used by a single
type can be modeled by a simple rdfs:domain triple. For instance, assuming that
the colleagues field for Persons is not shared with any other content type in the current
content model, we can simply write:

site:colleagues rdfs:domain site:Person.

CCK fields shared among several types have the union of all types sharing the field
as their domain. E.g., since Publication and Blog post share the title field, the site
vocabulary contains

site:title rdfs:domain
[owl:unionOf (site:Publication site:Blog_post)].

Ranges of fields are analogously encoded by rdfs:range triples. Additionally,
we distinguish here between fields of range text, integer, decimal, float, or date, and
those referring to file attachments, or node references. For the former, firstly, we as-
sign the datatypes supported in Drupal with their respective XML Schema datatypes,
i.e. text → xs:string, integer → xs:integer, decimal → xs:decimal,
float → xs:float, or date → xs:date. Secondly, as we know that Drupal
will only export literal values of specific datatypes for these, we can constrain the
site vocabulary further, by declaring the respective fields of type owl:Datatype-
Property. For instance, the text field name is reflected in the site vocabulary as:

site:name rdfs:range xs:string;
a owl:DatatypeProperty .

37

Fields that range over texts restricted to a fixed list of text values will be assigned a
respective enumerated class of values using owl:DataRanges, e.g. gender is mod-
eled as
site:gender a owl:DatatypeProperty;

rdfs:range
[a owl:DataRange; owl:oneOf ("male" "female")].

Finally, fields that range over file attachments (which get a URI in Drupal) or node
reference, are declared of type owl:ObjectProperty. Fields ranging over more
than one content type are reflected in the site vocabulary by owl:unionOf. E.g.,
contributions may be Publications or Blog posts, respectively.
site:origin a owl:ObjectProperty; rdfs:range

[owl:unionOf (site:Publication site:Blog_post)].

3.1.2 Adhering to Linked Data principles
Following the conventions mentioned in the previous section, the site vocabulary is
generated and published automatically at the site URL under the default namespace
http://siteurl/ns#, which we denoted by the namespace prefix site: in
the examples before. Likewise, any Drupal page on a site will be annotated with
RDFa triples that dereference terms of this site vocabulary as classes and properties
linking Drupal content nodes as subjects and objects. We are inline with the Linked
Data principles and best practices [15] as we provide resolvable HTTP URIs for all
resources: each of the pages also represents a node of a certain content type in the
CCK content model. That is, in our model, each node becomes an RDF resource, and
the HTML Web page describing the node is enriched with RDFa [1] that reflect the
links in the content model. We distinguish between the document – typically of type
foaf:Document – and the resource its describes which are linked to each other via
a foaf:page/foaf:topic relationship. By this design, any Drupal site using our
module is off-the-shelf amenable to any existing tool that can consume Linked Data
style RDF content.

3.2 Mapping Content Models to Existing Ontologies
While the functionality we have described previously fits Drupal sites well into the
Linked Data world, so far, we have created nothing more than an isolated ontology
based on the existing site content model. However, the benefits of this exercise remain
limited, unless we additionally allow linking the site vocabulary to existing vocabular-
ies and ontologies populating the Semantic Web. For instance, instead of just exposing
the Person type as a class in the site vocabulary, we might want to reuse a class in an ex-
isting ontology, such as foaf:Person from the FOAF1 ontology which some other
publishers on the web already use. Likewise, we may wish to state that a Publication
is actually a foaf:Document, or that the Persons are linked to their Publications by
the dc:creator property from Dublin Core,2 etc.

1http://xmlns.com/foaf/0.1/
2http://purl.org/dc/elements/1.1/

38

To this end, our module adds a new tab “Manage RDF mappings” to the content
type administration panel of CCK for managing such mappings to existing ontologies,
cf. Figure 3.2. An autocomplete list of suggested terms is shown, based on the key-
word entered by the user. The terms are coming from two different sources, which are
detailed below.

3.2.1 External vocabulary importer module
The module RDF external vocabulary importer (evoc)3 has been created to allow the
import of vocabularies available on the web and make the imported terms available
in the mapping interface. The site administrator simply needs to fill in a form with
the vocabulary URI and the prefix to be used in the system to refer to the vocabulary
term when using the CURIE format. We assume that the external vocabularies have
been created using a tool such as Protégé,4 OpenVocab,5 or Neologism,6 and published
somewhere on the Web in RDF Schema or OWL format. A set of SPARQL queries are
sent against the vocabulary to extract its classes and properties and some information
about them like label, comment, superclass, domain, range. These are then cached
locally to provide a smoother user experience. Given their popularity, the Dublin Core,
FOAF and SIOC vocabularies are imported automatically upon installation of the evoc
module.

3.2.2 External ontology search service
We have also developed an ontology search service to help users to find ontologies
published on the Web of Data. The search engine is entity-centric, i.e. instead of
returning a list of relevant ontologies, it returns a list of relevant ontology entities to
the user request. The service is currently covering cleaned up Web crawls of DERI’s
SWSE.org [30] and Sindice.com [47] search engines comprising Web data documents
that define properties and classes.

Data Pre-Processing Before being indexed, a sequence of pre-processing tasks is
performed on the ontology data. Among them, the most important ones are reasoning
and splitting. Reasoning is applied on each ontology in order to infer useful information
for a search engine, such as the hierarchy of classes and properties, the domains and
ranges of properties, etc. Reasoning over semantically structured documents enable
to make explicit what would otherwise be implicit knowledge: it adds value to the
information and enables an entity-centric search engine to ultimately be much more
competitive in terms of precision and recall [45]. Ontologies are then split into smaller
pieces on a per-entity basis. For each authoritative URI7 found in the ontology, we

3http://drupal.org/project/evoc
4http://protege.stanford.edu/
5http://open.vocab.org/
6http://neologism.deri.ie/
7The Linked Data principles suggest that URIs for named entities should be dereferenceable and should

link directly to the data describing the entity itself. Following this recommendation, we define as an author-
itative URI, a URI that is dereferenceable and is linked to the ontology.

39

simply extract all its outgoing links.

Indexing Model The simplest semi-structured indexing method is to represent an
ontology entity as a set of attribute-value pairs using a field-based approach [44]. For
example, the ontology class foaf:Person will have fields label, comment and sub-
ClassOf ; index terms are constructed by concatenating the field names with values of
this field, for example as subClassOf:Agent.

Objects of type literals and URI are normalised (tokenised) before being concate-
nated with their field name. It is thus possible to use full-text search not only on lit-
erals, but also on URIs identifying ontology terms. For example one could search for
”Agent” to match foaf:Agent, ignoring the namespace.

We allow search for plain keywords, combinations of keywords, or structured queries
(e.g. student AND subClassOf:Person or name AND domain:Person).
Search examples are shown in Figure 3.2. Details on improving the ranking of our
search algorithm can be found in [59].

3.2.3 Mapping process
The terms suggested by both of the import service and the ontology search service can
be mapped to each content type and their fields. For mapping content types, one can
choose among the classes of the imported ontologies and for fields, one can choose
among the properties. The local terms will be linked with rdfs:subClassOf and
rdfs:subPropertyOf statements to the mapped terms in the site vocabulary, e.g.:

site:Person rdfs:subClassOf foaf:Person

Wherever a mapping is defined, extra triples using the mapped terms are exposed
in the RDFa output of the page.

Additionally, we allow inverse reuse of existing properties. E.g., let us assume the
site administrator imports a vocabulary ex: that defines a relation between projects
and their members via the property ex:has member. Our user interface also allows
to relate fields to the inverse of imported properties. For instance, the current project
field which relate people to projects could be related to ex:has member in such an
inverse manner, resulting in

site:current_project rdfs:subPropertyOf
[owl:inverseOf ex:has_member] .

being added to the site vocabulary.
The use of subclassing and subproperties for mapping to existing ontologies – in-

stead of reusing the imported terms directly in the definitions of the site vocabulary
– is a simple way of minimizing unintended conflicts between the semantics of local
vocabulary and public terms. Per OWL semantics, constraints imposed on the local
term by the content model/site vocabulary such as the cardinality restrictions which we
derive from CCK (see Section 3.1) will thus not propagate to the public term. This
ensures safe vocabulary re-use, i.e. avoids what is sometimes referred to as “Ontology
Hijacking” [34].

40

Intuitively, safe reuse means that a vocabulary importing another one does not mod-
ify the meaning of the imported vocabulary or “hijack” instance data of the imported
vocabulary.

Let us assume that we would, on the contrary, directly use the imported proper-
ties and classes in the site vocabulary. That would cause problems. For instance, the
export of the content model as described in the previous section contains the triple
site:colleagues a owl:ObjectProperty. Would we have used the prop-
erty rel:worksWith directly here, we would have changed the SWRC vocabulary,8

which, in itself doesn’t declare rel:worksWith a owl:ObjectProperty.
explicitly. Direct reuse of existing classes in the site vocabulary would raise similar
issues.

We want to emphasize, however, that the reuse of rdfs:subclass, rdfs:sub-
property as well as inverse rdfs:subproperty relations alone is not sufficient
to guarantee consistency of the site vocabulary. While the following proposition intu-
itively holds, this is no longer true as soon as external vocabularies are imported.

Proposition 1 A site vocabulary that does not import any external ontologies is always
consistent.

Nevertheless, in case of importing external properties and classes, consistency can
no longer be guaranteed without further restrictions, even if both the site vocabularies
and the imported ontologies were consistent. This is easily illustrated by some exam-
ples.

Example 1 Assume that one would inversely assign the foaf:homepage property
to site:colleagues. Given that foaf:homepage is an inverseFunctional prop-
erty, this would imply functionality of site:colleagues, i.e. that each person
would have at most one colleague. This would, possibly result in strange side effects
on the site instance data such as yielding colleagues of a person with two or more
colleagues equal. 3

In other cases, contradicting cardinalities could even make site instance data incon-
sistent. Likewise the inverse reuse of Datatype Properties is problematic. To address
this problem, when displaying external properties assignable to fields in the content
model (see Figure 3.2) our tool extending CCK could make several restrictions such as
not displaying properties with cardinality restrictions attached that do not comply with
those specified in CCK for the respective field.

We emphasize that we do not aim to deploy a full OWL reasoner to detect all
inconsistencies possibly introduced by ontology reuse in our system. The identification
of syntactic fragments of OWL, which are safely usable in our tool without the need to
deploy a fully-fledged OWL (DL) reasoner (i.e., which features used in the imported
ontologies require which level of expressiveness for detecting possible inconsistencies
by reuse) is on our agenda.

8http://purl.org/vocab/relationship/

41

Our ultimate goal is a tool which allows the site administrator to import classes and
properties from existing ontologies in a fail-safe way such that no possible inconsis-
tencies may be possibly introduced by the extended CCK editor and later filling of the
site with content.

The reason why we are reluctant of deploying full reasoning services is that we
want our tool to fit in the Drupal ecosystem as a normal module that is installable
on a site without the need to install separate external software components such as a
DL reasoner. Wherefore we restrict ourselves to lightweight reasoning by applying
heuristics such as the detection of cardinality violations mentioned above. Our current
approach is a best-effort approach to avoid “misuse” of imported ontologies as far as
possible while deliberately keeping the interface simple. An alternative path would be
the invocation of a reasoning service deployed as a web-accessible service.

It must be stressed that the whole mapping step is optional, and the main benefit
of the Web of Data – exposing site data for re-use by third parties – is realized by the
default mapping.

3.2.4 User experience
This section briefly introduces our CCK extension from a user point of view .

Content type and field mapping

The first example illustrated on the left of Figure 3.2 is the mapping of the Person
content type to an RDF class. In order to ease the mapping process and prevent confu-
sion between classes and properties, the module will only display RDF classes or RDF
properties where appropriate. Moreover an AJAX autocomplete search through the im-
ported terms allows the user to quickly identify the most relevant terms for each map-
ping. These measures help to make the mapping process a fairly straightforward task
that does not require deep understanding of the Semantic Web principles. When typing
person in the text field, a list of suggestions is pulled from both the local set of terms
and from the external search service. The local terms appear first: foaf:Person is
a CURIE and reuses the prefix definition of the site which can be defined during the
import step. Then the list is completed with the terms from the external service, which
includes a much greater variety of terms. This might help the user in discovering new
terms or ontologies which she may not previously have encountered. Note that the
external terms are displayed as full URI as we want to avoid imposing any prefix on
them. We are currently evaluating the best way to display these.

The second example on the right of Figure 3.2 illustrates the case where the user
wants to reuse the Relationship Ontology9 to express relationships between colleagues
who work with each other. Despite the fact that the Relationship Ontology was not
imported locally, the external ontology search web service (3.2.2) was able to suggest
the right term URI.

9http://purl.org/vocab/relationship/

42

Figure 3.2: RDF mappings management through the Drupal interface: RDF class map-
ping (left) and RDF property mapping (right).

Vocabulary Import

Upon installation of the evoc module, the system will automatically import the com-
monly used vocabularies Dublin Core, FOAF and SIOC. As mentioned earlier, the user
can also import vocabularies published elsewhere on the web via a form containing a
field for the URI of the vocabulary to be imported and a field for the prefix which will
be used across the application (see Figure 3.3). The system will then cache all the
external RDF terms and propose them for mapping.

Figure 3.3: Form for importing an external vocabulary (left) and confirmation message
after a vocabulary import (right).

3.3 Exposing and Consuming Linked Data with SPARQL
In analogy with the idea of Linked Data, cf. Section 2.5, we extend our use case to
enable an environment of “Linked CMS sites”, as illustrated in Figure 3.4. Our goal is
to use our project blogs website as a hub containing information federated from various

43

remote locations:

• DBLP is a public SPARQL endpoint containing metadata on scientific publica-
tions. It is part of the Linking Open Data cloud and runs on a D2R server.10

• The Science Collaboration Framework website which contains information about
the SCF team and their scientific publications. It runs Drupal and the modules
described in this thesis.

PROJECT BLOGS

REMOTE DRUPAL SITE

DBLP

SPARQL
endpoint

SPARQL
endpoint

Tim
.........

SPARQL
endpoint

SELECT ?name ?title
WHERE {
 ?person foaf:made ?pub.
 ?person rdfs:label ?name.
 ?pub dc:title ?title.
 FILTER regex(?title, "knowledge", "i")
}

Figure 3.4: Extended example in a typical Linked Data eco-system.

3.3.1 Exposing RDF data with a SPARQL endpoint
The first step to ensure interoperability on the Web of Data is to provide an endpoint
which exposes RDF data. The RDF SPARQL endpoint module uses the PHP ARC2
library.11 Upon installation, the module will create a local RDF repository which will
host all the RDF data generated by the RDF CCK module (see Section 3.1). The site
can then be indexed with a simple click. The RDF data of each node is stored in a graph
which can be kept up to date easily when the node is updated or deleted. Figure 3.5
(left) depicts a list of publications whose title contains the keyword “knowledge”.

10http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/
11http://arc.semsol.org/

44

Figure 3.5: A list of SPARQL results (left) and an RDF SPARQL Proxy profile form
(right).

3.3.2 Consuming Linked Data by lazy loading of remote RDF re-
sources

With an ever growing amount of data available on the Semantic Web, one site cannot
technically afford to host all the data available on the Web, even if the scope was re-
stricted to a specific domain. Instead, each piece of data can be retrieved only when
needed. This design pattern is known as lazy loading [27]. Information on the Web of
Data is made available in endpoints which can be queried and from where information
can be retrieved according to the specific needs of an application. The SPARQL query
language [51] allows complex WHERE patterns able to extract the pieces of informa-
tion desired, but another feature of SPARQL is the ability to specify a schema in which
the RDF data should be returned. These CONSTRUCT queries are useful in the case
where the information retrieved should retain a particular structure which would not fit
in flat array of results such as a SELECT SPARQL query would provide.

Building atop the existing RDF schema provided by the RDF CCK module pre-
sented in Section 3.1, we developed RDF SPARQL Proxy, a module which allows to
import RDF instances on demand, via a CONSTRUCT query in which the WHERE
clause corresponds to the schema of the distant data on the SPARQL endpoint, and the
CONSTRUCT clause corresponds to the local site schema defined by RDF CCK. As
depicted on Figure 3.5(right), site administrator can define profiles, which specify the
rules for creating or updating the local RDF instances based on the schema of the dis-
tant RDF data. In order to keep these profiles generic, we allow input parameters such
as URIs. In this example, we map the publications by an author represented by her
URI %uri along with the information about each publication (title, name of authors,
conference) to our local schema. The value of the %uri parameter will be replaced for
the value given as input, either in the address bar of the browser or by the API calling
the RDF SPARQL Proxy module. For our use case, we have setup two such profiles:
one for bridging the DBLP SPARQL endpoint to the project blogs website, and a sec-
ond for bridging the Science Collaboration Framework website. When visiting Tim’s
profile page, the relevant publication information will be fetched from both DBLP and
SCF websites, and either new nodes will be created on the site or older ones will be
updated if necessary.

45

Chapter 4

User Evaluation and Adoption
of the Implemented Solutions

Our hypothesis and general rationale is that ease-of-use and a one-click solution to
export Linked Data from CMSs will boost the Semantic Web. We exposed this hypoth-
esis to a small user evaluation. What we aimed to proof is that linking a site to existing
vocabularies by use of our Drupal module does not impose a significant burden to site
administrators and the benefits of exposing Semantic Web data such as searchability
may outweigh this negligible extra effort. In this section we evaluate the usage of the
implementations we created, the extra effort required by our approach and some of its
particular use cases and applications.

4.1 Usability
We did a limited-scale user evaluation aimed at showing that linking a site to existing
vocabularies with our Drupal module does not impose a significant burden on site ad-
ministrators. We argue that the benefits of exposing Semantic Web data such as greatly
improved searchability, will typically outweigh this extra effort.

Our evaluation was carried out on a group of 10 users, moderately familiar with
Drupal and more or less familiar with the Semantic Web. They were asked to set up
a content model composed of 2 content types Article and Editor which included 5
and 4 fields, respectively. Each major step of the process was timed in order to be
exploited in a statistical analysis. The documents which were given to the users during
the evaluation are in Appendix B

Step 1. We asked our users of various degrees of familiarity with Drupal to set up
a predefined content model composed of 2 content types which included 4 and 5 fields,
respectively, using the CCK User Interface, an approach typical for site administrators
on many typical Drupal sites.

Step 2. In a second step we evaluated the extra effort required to create RDF
mappings to the fields defined in CCK. The pool of users was divided into two five-
person groups. Group A (user 1 to 5) had to judge which mappings were the most

46

appropriate and group B (users 6 to 10) was given a list of predefined mappings.
In Figure 4.1, the extra step to map the content model to existing ontologies rep-

resented about half the time of the initial setup. On average, the extra time spent on
specifying the mappings took 58% of the initial setup time for group A and significantly
less (39%) for the group B. While linking to external vocabularies was subjectively ex-
perienced as easy by all users, this difference between test groups A and B, indicates
that a significant component of effort and time consumed was actually spent deciding to
which properties and classes to link with the CCK fields, i.e., which ontologies should
be reused.

Figure 4.1: Comparison between initial setup and RDF mappings.

Summarizing, our findings show that whereas linking to external vocabularies was
experienced easy by our test group, the main effort and time consumed was actually
in deciding to which properties and classes to link, that is which ontologies should
be reused how. Inspired by this finding we put on our agenda more investigation on
how we can support non-Semantic-Web-savvy users in finding the “right” classes and
properties for their needs.

4.2 Adoption
In order to make this implementation available to as many developers and site admin-
istrators as possible, we have released the RDF CCK module on Drupal.org.1 Since its
release Nov. 2008, the RDF CCK module has – steadily increasing – reached a number
of 75 deployed installations2 at the time of this writing as shown in Figure 4.2. This
is encouraging. Our module is currently being tested and will be deployed in the next

1http://drupal.org/project/rdfcck
2according to http://drupal.org/project/usage/rdfcck

47

version of the Science Collaboration Framework (SCF) platform, a special Drupal dis-
tribution developed at the Massachusetts General Hospital and Harvard University in
collaboration with DERI and other participating institutions [23].

Figure 4.2: Evolution of the number of installations of RDF CCK since its release.

48

Chapter 5

Minimal RDF Support for
Drupal Core

The solutions described in the previous chapters have been developed for Drupal 6.
In order to facilitate the dissemination of our approach on the Web, and in particular
within the Drupal community, we have established and implemented a set of minimal
features for the Core component of the next version of Drupal (Drupal 7), see Table 5.1.
They are explained in this chapter.

Feature Minimal RDF support Full RDF support
Site vocabulary - X
RDFa output X X
Mapping to external vocabularies X X
Vocabulary import - X
SPARQL endpoint - X
RDF SPARQL Proxy - X
Vocabulary publishing - X

Table 5.1: RDF related modules available for Drupal

5.1 RDF Schema proposal
The first aspect to take into consideration is the RDF classes and properties to use
for mapping the core constituents of Drupal to RDF. Figure 5.1 is the RDF schema
which was proposed and discussed with the Drupal community at http://groups.
drupal.org/node/9311.

49

node
sioc:Item

revision

titledc:title

languagedc:language

teaserdc:description

createddcterms:created

changeddcterms:modified

type
drupal:type

dcterms:hasVersion

bodycontent:encoded

teaserdc:description

timestampdcterms:created

bodycontent:encoded

titledc:title

logsioc:note

user
sioc:User

sioc:hasCreator

users.mail sioc:email

profile_firstname foaf:firstName

profile_lastname foaf:surname

profile_gender foaf:gender

users.name

sioc:account_of

foaf:Person

foaf:accountName

openid foaf:openid

role
sioc:Role

role.name dc:title

permission drupal:has_permission

sioc:has_function

sioc:has_reply

term
skos:Concept

sioc:topic

term_data.descripitonskos:note

term_synonym.nameskos:altLabel

term_data.nameskos:prefLabel

skos:narrower

skos:related

@prefix content: <http://purl.org/rss/1.0/modules/content/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix drupal: <http://drupal.org/ns/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix sioc: <http://rdfs.org/sioc/ns#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

Figure 5.1: Drupal RDF Schema proposal.

The schema includes the main entity types of Drupal Core:

• Node: main content holder in Drupal. Each has a specific Content Type, e.g.
article, blog post, forum topic, etc.

• Term: implemented by the taxonomy module, used to categorize content or tag
nodes with the topic they cover.

• User: holds data about the authors or members of a site.

• Revision: version of a node at a given point in time. This feature is used on
wikis for example.

• Role: each user can have a set of roles, for instance forum moderator, editor, site
administrator. Typically, each role will be associated with a set of permissions.
Examples of permissions are edit a certain type of page, revert revisions, delete
content, etc.

• Comment: authorised users can leave comments on nodes. This entity type is
not represented directly on the schema, as it is included in the concept of node
(comment as node).

50

This Drupal core use case is one of the reasons which motivated the creation of the
SIOC access module.1

5.2 Implementation for Drupal Core 7
Based on the schema of the previous section and the work on the code sprint organised
at DERI in June 2009,2 several patches for Drupal core have been created.3 They are
detailed below.

5.2.1 RDF Mapping Definition
While the scope of RDF in core is limited to generating RDFa for now, the design
is not RDFa-only and was produced in such a way that it can be extended by other
contributed modules, such as the RDF API4 module which could export this data in
other RDF formats such as RDF/XML, N-Triples, JSON, etc. For that reason, the RDF
is not encoded directly in RDFa in the HTML templates, but rather embedded in the
core data structure of Drupal. While the external vocabulary import functionality is
not present in core, external RDF terms are still used and asserted programmatically
using an array structure. Each module defining its own data model is responsible for
assigning the appropriate mappings to this model. CURIEs are used to keep the code
shorter and more readable, and some system-wide common prefixes are defined in the
system module. The system module is one of the main underlying modules present
on all Drupal sites. A module can extend Drupal by implementing hooks.5 When
Drupal wants to allow modules to interfere with its behavior, it will determine which
modules are implementing a given hook and call these functions. Code Listing 5.1
shows an implementation of hook rdf namespaces by the system module. Note
that any other module could declare more prefixes by implementing this hook, would
they require new prefixes to express their RDF mappings.

Code Listing 5.1: Prefixes declaration for the system module.

/**
* Implement hook_rdf_namespaces().

*/
function system_rdf_namespaces() {

return array(
'dc' => 'http://purl.org/dc/terms/',
'foaf' => 'http://xmlns.com/foaf/0.1/',
'rdf' => 'http://www.w3.org/1999/02/22-rdf-syntax-ns#',
'sioc' => 'http://rdfs.org/sioc/ns#',
'xsd' => 'http://www.w3.org/2001/XMLSchema',

);
}

1http://rdfs.org/sioc/access
2http://groups.drupal.org/node/21469
3http://drupal.org/project/issues/search/drupal?issue tags=RDF
4http://drupal.org/project/rdf
5See a list of hooks Drupal 7 offers at http://api.drupal.org/api/group/hooks/7

51

While the Content Construction Kit (CCK) was a module separate from core in
Drupal 6, some of its features have been integrated in the core of Drupal 7 under the
code name “Field API”,6 which allows custom fields to attached to Drupal objects.
It also takes care of the storage, loading, editing and rendering of the fields. CCK
was restricted to add fields to nodes, the Field API can attach a field to any entity
type: node, user, taxonomy term, etc. Drupal 7 introduces the concept of ’bundle’ –
an extension of the concept of content types – which is a group of fields forming an
entity. An example of bundle is ’blog’ which is composed of a title, content of the post,
creation date, author and her name, respectively title, body, created, uid and
name. Code listing 5.2 shows how the blog module can define the RDF mappings of
the ’blog’ bundle by implementing the hook rdf mapping.

Code Listing 5.2: Example of RDF mapping definition for the blog module.

/**
* Implementation of hook_rdf_mapping().

*/
function blog_rdf_mapping() {

return array(
'blog' => array(

'rdftype' => 'sioc:Post',
'title' => 'dc:title',
'body' => 'content:encoded',
'created' => array(

'property' => array('dc:date', 'dc:created'),
'datatype' => 'xsd:dateTime',
'callback' => 'date_iso8601',

),
'name' => array('dc:creator', 'foaf:name'),
'uid' => 'sioc:has_creator',

)
);

}

During the loading of an entity (node, user, etc.), the RDF mappings are automat-
ically attached to the entity, so that the RDF model of this entity is carried along with
its data for further processing.

5.2.2 RDFa output
At this point the RDF data has only been made available in memory, which would not
serve much purpose unless it is serialized in any way. With RDFa, it becomes possible
to embed RDF data in XHTML documents: as each piece of data is being rendered
by Drupal’s theme layer, extra XHTML attributes are added to express the underlying
RDF mappings. Based on the roadmap for RDFa in Drupal 7 which was discussed with
the Drupal community,7 Drupal’s theme layer was adapted to allow this type of output.

First, some changes have been made to the header of the default XHTML template
generated by Drupal. These are illustrated in Code Listing 5.3.

6http://api.drupal.org/api/group/field/7
7http://groups.drupal.org/node/16597

52

• The DOCTYPE has been adapted to the match the W3C RDFa specifications [1].

• In order to be able to reuse the same CURIEs as the ones defined in the RDF
mappings, the RDF namespace prefixes are serialized in the <html> tag of the
XHTML output generated.

• A profile attribute is added to the <head> tag to specify the GRDDL transfor-
mation to use when extracting RDF from the RDFa document.

Code Listing 5.3: XHTML output of an RDFa enabled Drupal page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"
"http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
xmlns:dc="http://purl.org/dc/terms/"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:sioc="http://rdfs.org/sioc/ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<head profile="http://ns.inria.fr/grddl/rdfa/">
...

Some theme functions are already compatible with RDFa attributes, such as the
item list theme function which renders a set of items in a XHTML list. Code
Listing 5.4 shows an example in PHP and its rendered RDFa XHTML code.

Code Listing 5.4: Example of a theme function for rendering a list of items.

$items = array();
$items[] = array('The Social Semantic Web', 'property' => 'dc:title');
$items[] = array('John Breslin', 'property' => 'dc:creator');
$items[] = array('2009-09-01', 'property' => 'dc:date');
$options[] = array('about' => 'http://example.org/book/book1');
theme('item_list', $items, 'the book', 'ul', $options);

<div class="item-list">
<h3>the book</h3>
<ul about="http://example.org/book/book1">

<li property="dc:title">The Social Semantic Web
<li property="dc:creator">John Breslin
<li property="dc:date">2009-09-01

</div>

53

Chapter 6

Neologism: Easy RDFS
vocabulary publishing

While the implementation of our approach described in Chapter 3 provide a site vo-
cabulary automatically out of the box, some administrators might want to go beyond
the expressivity and the set of classes and properties generated in the site vocabulary in
order to cater for their specific needs. In this chapter we introduce a tool which allows
to create RDF vocabularies independently from the internal content model of a Drupal
site.

Neologism1 is a web-based vocabulary editor and publishing platform designed to
address these issues related to Vocabulary authoring and publishing on the Web. It is
currently available as an open-source project.2

6.1 Architecture
Public interface. To non-authenticated users on the Web, Neologism presents a very
simple interface: a homepage that lists one or more vocabularies, and for each of them
a vocabulary page containing some general information about the vocabulary, followed
by the descriptions of all its classes and properties.

Editor. After a vocabulary maintainer logs in, additional links become visible on
the vocabulary page and allow adding new terms, as well as editing of existing terms.
Terms are created and edited through a web form (Figure 6.2). The form allows entry
of an ID (to become part of the term’s URI), label, comment, subclasses, subproperties,
domain, range, disjoint classes, inverse properties, and marking a property as functional
or inverse functional. Authenticated users can also create new vocabularies and modify
the vocabulary metadata.

1http://neologism.deri.ie/
2http://neologism.googlecode.com/

54

RDFS output, URIs and content negotiation. The URIs identifying classes and
properties are always generated by appending the hash character and the term’s ID to
the URI of the vocabulary page. This makes sure that the vocabulary page is returned
when these URIs are resolved. HTTP requests to the vocabulary page are subject to
content negotiation. Web browsers will see the HTML variant shown in Figure 6.1.
RDF-aware clients will receive the RDFS/OWL specification, either in RDF/XML or
N3 syntax. In a nutshell, Neologism publishes standards-compliant vocabularies on the
Web without requiring any additional effort on the part of vocabulary maintainers.

Implementation. Neologism is implemented in PHP as a Drupal module. Drupal
reduces development time by providing many features for free, such as account man-
agement, database abstraction layer and content management. It also makes integration
with a larger Drupal-based site very easy, for example to provide a news blog and dis-
cussion forum for each vocabulary built with Neologism. All data is stored in a MySQL
database. RAP3 is used to serialize RDF/XML and N3. The PHP Content Negotiation
library4 is used instead of the usual Apache rules to implement content negotiation, and
Vapour5 was used to validate its correctness. The overview diagram is implemented us-
ing Adobe Flex and coded in ActionScript; the ObjectHandles and Tweener libraries
are used for animation and object handling.

6.2 User experience
The page describing a vocabulary is very similar to most online vocabularies. Fig-
ure 6.1 presents a vocabulary page when logged on the site and ready for authoring.

Figure 6.1: A vocabulary page in Neologism, as it appears to an authenticated user.

In editing mode, the user can specify the information of the class or property she
wishes to create or edit as shown on Figure 6.2.

The vocabulary page provides access to a diagram that shows the vocabulary’s
classes and their relationships (Figure 6.3). The vocabulary maintainer can arrange

3http://www4.wiwiss.fu-berlin.de/bizer/rdfapi/
4http://ptlis.net/source/php-content-negotiation/
5http://vapour.sourceforge.net/

55

Figure 6.2: A form for editing a class.

the diagram into a sensible layout and then save its current state which will henceforth
be shown to all users. Users can also move classes on the graph should they wish to
view the vocabulary in a different manner, or explore it in a specific way. Zooming
functions are also provided.

6.3 Adoption
As for Neologism, some groups have already chosen to use Neologism on their pro-
duction site to publish their RDF vocabulary. It is the case for the http://rdfs.
org/ns/ site which hosts:

Vocabulary of Interlinked Datasets (voiD) (http://rdfs.org/ns/void) The
Vocabulary of Interlinked Datasets (voiD) is a vocabulary and a set of instruc-
tions that enables the discovery and usage of linked datasets. A linked dataset is
a collection of data, published and maintained by a single provider, available as
RDF on the Web, where at least some of the resources in the dataset are identified
by dereferenceable URIs.

HTTP Semantics (http://rdfs.org/ns/http-sem) A vocabulary for captur-
ing the semantics of HTTP regarding resources and their representations and
their interactions.

RDForms (http://rdfs.org/ns/rdforms) A vocabulary that defines how to
represent HTML forms and fields (input, select, etc.) and CRUD operations on
forms.

56

Figure 6.3: The vocabulary overview diagram.

Abstract Resource Description Vocabulary (aardv) (http://rdfs.org/ns/aardv)
Abstract Resource Description Vocabulary (aardv) is the least common denomi-
nator for the resource descriptor vocabularies XRD, POWDER, and voiD.

Statistical Core Vocabulary (SCOVO) (http://rdfs.org/ns/scovo-plus)
A vocabulary for representing statistical information on the Web of Data.

57

Chapter 7

Conclusions and Outlook

In this thesis, we have presented a number of extensions to Drupal that enable the
exposure of common site content as Linked Data and likewise allow to aggregate and
reuse existing RDF data and vocabularies from the Web in Drupal sites. Finally we
described a lightweight vocabulary editor which allows site administrators to create
new RDF vocabularies or extend their site vocabularies without the need to deploy
complex tools such as Protégé [40].

Our most widely deployed module RDF CCK – available at the official Drupal site
http://drupal.org/project/rdfcck) – allows to link existing and newly
deployed Drupal sites to the Web of Data with a few clicks. It auto-exports the con-
tent model of a Drupal site to an ontology that is published following common best
practices for ontology publication and enables the exposure of Drupal site content as
RDFa. We link to existing properties and classes from other Semantic Web vocabu-
laries by subclass/subproperty relations following best practises and safe vocabulary
reuse. However, a broader issue remains for the larger RDF community to solve: a
complex part of the process of generating high-quality RDF is the task of finding and
choosing good vocabularies and ontologies. There are some services that support this
task, such as the search facility for commonly used vocabulary terms on the Web of
Data we also presented, but they are not sufficient and this task remains difficult for
non-experts. This is a major problem that the community needs to address in order for
the Web of Data to succeed.

The site vocabulary uses a fragment of the available OWL constructs which is suf-
ficient to reflect the site content model’s structure in a machine-readable manner and
is guaranteed to be consistent. Further planned improvements include the extended
consistency checks on imported ontologies that should be done while editing and pre-
vent the site administrator from introducing inconsistencies. For example, during the
mapping process, suggested properties for a field with a CCK cardinality should only
include compatible external properties, i.e. properties with a maximum cardinality
greater or equal to the CCK field.

We are also aware that since Drupal local site vocabularies are likely to change
as the site structure evolves, therefore they should be reused sparingly: more general,
maintained, and possibly community driven ontologies are to be preferred for mapping

58

a site content model to RDF.
A second module – RDF SPARQL Endpoint – exposes upon installation a SPARQL

endpoint on the site data without any additional configuration steps for the site admin-
istrator who wishes this feature.

Furthermore, for experienced users, we also offer a third module – RDF SPARQL
Proxy – that allows to dynamically load data into the CCK content types, and displays
this data using a lazy loading strategy for minimizing delays in the user experience.

In combination, all three modules above offer new possibilities to create networked
Web applications and pushing further population of the Web of Data by significantly
lowering entry barriers for a large user community – CMS administrators.

Next steps include the extension of RDF/OWL export for Drupal to other modules
such as for instance the Taxonomy module which allows to define tag hierarchies usable
in Drupal, which we plan to expose as RDF using SKOS[46]. In our radar is also the
Inherit module1 which abstracts the content types and allows to create “sub content
types” inheriting the fields of the parent content type, thus reflecting the concepts of
subclasses and subproperties in RDF. We will try to also lower the burden for users
of the RDF SPARQL Proxy – currently only accessible to users knowledgeable in
SPARQL – to really reveal the full potential of our approach to a wider audience.

In the recent years, website administrators have been encouraged to publish site-
maps.2 A sitemap is an XML file which lists the URLs of a site along with some
metadata. Sitemaps help search engine to crawl sites more efficiently. The Semantic
Sitemap format[22] extends the existing and widely used sitemap XML format3 and
allows webmasters to describe Semantic Web datasets and how to best consume it. The
XML sitemap module for Drupal4 could be extended to embrace the Semantic Sitemap
format and expose more information about the RDF data available via the modules
detailed in this thesis.

The system we have implemented is a working prototype at http://drupal.
deri.ie/projectblogs/. All the modules developed in the course of this the-
sis have been released under the GPL 2 licence5 and are available for download on
Drupal.org.

For more advanced users who wish to build their own RDF vocabulary, whether it is
to extend the auto generated site vocabulary by RDF CCK, or simply to design a vocab-
ulary to answer specific needs, we have developed Neologism, a web-based vocabulary
publishing system that simplifies the process of creating, publishing and maintaining
RDF vocabularies by (i) instant web-based publishing, (ii) focus on a limited subset
of RDFS and OWL, (iii) avoiding instance editing or browsing, and (iv) handling URI
management and HTTP content negotiation. We hope that the presented system will
encourage the creation of new vocabularies and thereby contribute to a generally more
interesting, relevant and standards-compliant Semantic Web.

We have identified some areas in which Neologism can be improved.

1http://drupal.org/project/inherit
2http://sitemaps.org/
3http://www.sitemaps.org/protocol.php
4http://drupal.org/project/xmlsitemap
5http://www.gnu.org/licenses/gpl-2.0.html

59

Hosted Neologism service. Currently, vocabulary maintainers must install Neologism
on their own webspace. A central hosted service, which could be easily built on
the Drupal platform, would remove this barrier.

Branching and revision tracking. Neologism does not yet offer revision control. Some
desirable features for vocabulary revision control are: archival of all prior ver-
sions; grouping of several small edits into a single version to avoid putting the
vocabulary into an inconsistent intermediate state; publishing changes as a draft
before accepting them as a new version.

Plugin system. We intentionally kept the set of supported class and property annota-
tions small to simplify the user experience, and don’t support many possible fur-
ther annotations, such as OWL cardinality constraints, plural and inverse labels,6

multilingual labels or associating Fresnel lenses [17] with classes and properties.
Such additional annotations could be supported through plugins that are installed
by vocabulary maintainers.

Consistency checking. Neologism doesn’t check the created vocabulary for consis-
tency. This can become an issue when a vocabulary is integrated with several
external vocabularies. A solution could be the integration of an external reason-
ing service that performs consistency checks and is invoked through an API over
the Web.

Plans for practical deployment
Harvard Medical School7 and DERI are collaborating on a larger use case in the course
of which some of the technologies mentioned in this thesis were developed. The Sci-
ence Collaboration Framework (SCF) [23] is a distributed Drupal installation launched
in Beta version at various institutions working in the Biomedical domain.

Biomedical informatics provide one particularly cogent and well-researched set of
use cases for the facility we have built and there are big expectations for the use of
Linked Date in this domain, especially in the SCF Project. SCF is building Drupal
based tools that will enable scientific collaboration and Semantic search in this area.

Mapping of graph-based metadata embodying controlled terminologies and rela-
tionships (ontologies) to CMS-managed content promises to be exceptionally useful
in biomedical informatics, and more broadly in scientific communications on the web.
Biomedicine, a highly descriptive, inductive and experimentally based discipline, is
rife with complex terminologies. Synonyms, subsumption, and other semantic rela-
tionships in such terminologies are natural and necessary. But currently we are still
limited in the power of text searching across documents and sites if the relationships
and properties in the text are not computable across the elements of these terminologies
(or ontologies). This requires that certain elements in the text be assigned a semantic
context which is computable in the CMS. This is a use case for semantic tagging of
documents, which can leverage the well-defined ontologies in this domain.

6http://www.wasab.dk/morten/2004/03/label
7http://hms.harvard.edu/

60

For example, from scientific papers in this domain we may extract text strings
such as “nf-κB”, “nuclear factor kappa B”, or “nf-kappa-B”. By adequate thesauri or
user tagging using CommonTag,8 all of these could actually be matched to the URI
of “NFKB1”, which could be coming from the HUGO official gene names.9 More
generally, synonyms could all resolve to a common URI represented in the Neurocom-
mons [52] triple store, and the synonymy relationship would be represented in RDF and
available at the Neurocommons SPARQL endpoint. Such extended search facilities are
next on our agenda, once the simple annotation of publications authors like presented
in a simplified form in this thesis is realised. Here, mapping RDF to an associated
CCK generated type in Drupal will import the synonymy relationships and enable term
expansion to increase search power.

Existing biomedical ontologies and database records which represent information
about genes and other biomedical terms represent structured relationships, all of which
can be found in RDF and drawn into our site.

This use case becomes particularly compelling when one considers that biomedical
research consists of myriad sub-specialities ranging across from basic research to clin-
ical practice, as well as incorporating divisions by biological process, organ, species,
cell type, molecule, protein family, technological approach, clinical orientation, disor-
der, and so forth. Each of these areas can and often does have its own slightly different
semantic universe and forms of discourse. The ability to intersect documents and in-
formation from and about researchers across these domains of discourse, at scale, with
assistance from computers, is dependant upon our ability to leverage formal terminolo-
gies and ontologies by linking them to text in scientific communications. That is pre-
cisely the purpose of the modules described in this thesis. The experts in these domains
are hardly IT or Semantic Web experts, though they are able to use easy-configurable
tools for aggregating and setting up CMSs like Drupal, setting up the required modules
via SCF on their site, and enter relevant data.

At the moment, RDF CCK is being deployed in the SCF Beta version, the other
modules mentioned in this thesis are shortly before deployment and several of them
have been co-developed or inspired by existing SCF modules such as SCF Node Proxy
module, which we mentioned in the introduction.

The “infection” of emerging power-user communities such as the rapidly growing
Drupal site administrator and developer groups is in our opinion a key in boosting
Semantic Web technologies. We shall provide easy-to-use, unobtrusive RDF exposure
in a way general enough for a variety of sites, thus potentially contributing significantly
to populating the Web with high-quality RDF data. As a matter of fact, our work was
listed in the recently publish technical report on Linked Data Applications [32].

In the bigger picture, the work carried out specifically for Drupal could constitute a
base example for other Content Management Systems such as Typo3 or Joomla!. Such
work is currently being carried out by the IKS EU project10 which manifested their
interest in our approach and invited us to present this work at their first workshop.11

8http://commontag.org
9HUGO Gene Nomenclature Committee http://www.genenames.org/

10http://www.iks-project.eu/
11http://www.iks-project.eu/requirements-workshop

61

Bibliography

[1] Ben Adida, Mark Birbeck, Shane McCarron, and Steven Pemberton (eds.). RDFa
in XHTML: Syntax and Processing, October 2008. W3C Recommendation, avail-
able at http://www.w3.org/TR/rdfa-syntax/.

[2] Joan Aliprand, Julie Allen, Joe Becker, Mark Davis, Michael Everson, Asmus
Freytag, John H. Jenkins, Mike Ksar, Rick McGowan, Lisa Moore, Michel Suig-
nard, and Ken Whistler. The Unicode standard version 3.0. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA, 2000.

[3] Sören Auer. Powl - a web based platform for collaborative semantic web de-
velopment. In Proc. of 1st Workshop Workshop Scripting for the Semantic Web
(SFSW05), Hersonissos, Greece, May 30, 2005, MAY 2005.

[4] Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian Hellmann, and David
Aumüller. Triplify - lightweight linked data publication from relational databases.
In Proceedings of WWW 2009, 2009.

[5] Sören Auer, Sebastian Dietzold, and Thomas Riechert. OntoWiki, a tool for so-
cial, semantic collaboration. The Semantic Web - ISWC 2006, 4273/2006:736–
749, 2006.

[6] Reto Bachmann-Gmür. Knobot. In 2006 Jena User Conference. 2006 Jena User
Conference, 2006.

[7] Cosmin Basca, Stéphane Corlosquet, Richard Cyganiak, Sergio Fernández, and
Thomas Schandl. Neologism: Easy vocabulary publishing. In SFSW2008 work-
shop, 2008.

[8] Dave Beckett and Tim Berners-Lee. Turtle - Terse RDF Triple Language, Jan-
uary 2008. W3C Team Submission. Available at http://www.w3.org/
TeamSubmission/turtle/.

[9] David Beckett. The Design and Implementation of the Redland RDF Application
Framework. In Proceedings of Semantic Web Workshop of the 10th International
World Wide Web Conference, Hong-Kong, China, May 2001.

[10] T. Berners-Lee. The Giant Global Graph, November 2007. Available at http:
//dig.csail.mit.edu/breadcrumbs/node/215.

62

[11] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI):
Generic Syntax - RFC 3986, January 2005.

[12] Tim Berners-Lee. Notation3 (N3) A readable RDF syntax, March 2006. Available
at http://www.w3.org/DesignIssues/Notation3.

[13] Tim Berners-Lee. Linked Data, Design Issues, June 2009. Available at http:
//www.w3.org/DesignIssues/LinkedData.html.

[14] Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj,
James Hollenbach, Adam Lerer, , and David Sheets. Tabulator: Exploring and
Analyzing Linked Data on the Semantic Web. In The 3rd International Semantic
Web User Interaction Workshop (SWUI06), 2006.

[15] Diego Berrueta and Jon Phipps. Best Practice Recipes for Publishing RDF Vo-
cabularies. Working Draft, W3C, 2008. W3C Working Group Note, available at
http://www.w3.org/TR/swbp-vocab-pub/.

[16] Christian Bizer, Tom Heath, Kingsley Idehen, and Tim Berners-Lee, editors.
Linked Data on the Web (LDOW2008), April 2008.

[17] Christian Bizer, Ryan Lee, and Emmanuel Pietriga. Fresnel, a Browser-
Independent Presentation Vocabulary for RDF. In International Semantic Web
Conference 2006, 2006.

[18] Harold Boley, Michael Kifer, Paula-Lavinia Pătrânjan, and Axel Polleres. Rule
interchange on the web. In Reasoning Web 2007, volume 4636 of Lecture Notes
in Computer Science, pages 269–309. Springer, September 2007.

[19] Dan Brickley and R.V. Guha (eds.). RDF vocabulary description language 1.0:
RDF Schema, February 2004. W3C Recommendation, available at http://
www.w3.org/TR/rdf-schema/.

[20] Dan Brickley and Libby Miller. FOAF Vocabulary Specification. Technical re-
port, 2005.

[21] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Language
(WebML): a modeling language for designing Web sites. In Proceedings of the
9th international World Wide Web conference on Computer networks : the in-
ternational journal of computer and telecommunications netowrking, pages 137–
157, Amsterdam, The Netherlands, The Netherlands, 2000. North-Holland Pub-
lishing Co.

[22] Richard Cyganiak, Holger Stenzhorn, Renaud Delbru, Stefan Decker, and Gio-
vanni Tummarello. Semantic sitemaps: Efficient and flexible access to datasets
on the semantic web. In Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann,
and Manolis Koubarakis, editors, ESWC, volume 5021 of Lecture Notes in Com-
puter Science, pages 690–704. Springer, 2008.

63

[23] Sudeshna Das, Lisa Girard, Tom Green, Louis Weitzman, Alister Lewis-Bowen,
and Tim Clark. Building biomedical web communities using a semantically aware
content management system. Briefings in Bioinformatics, pages 10(2):129–38,
March 2009.

[24] Mike Dean, Guus Schreiber, Sean Bechhofer, Frank van Harmelen, Jim Hendler,
Ian Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn An-
drea Stein. OWL Web Ontology Language Reference, February 2004. W3C
Recommendation.

[25] Renaud Delbru, Axel Polleres, Giovanni Tummarello, and Stefan Decker. Context
dependent reasoning for semantic documents in sindice. In Proceedings of the
4th International Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS 2008), Karlsruhe, Germany, October 2008.

[26] Li Ding, Timothy W. Finin, Anupam Joshi, Rong Pan, R. Scott Cost, Yun Peng,
Pavan Reddivari, Vishal Doshi, and Joel Sachs. Swoogle: a search and metadata
engine for the semantic web. In David A. Grossman, Luis Gravano, ChengXiang
Zhai, Otthein Herzog, and David A. Evans, editors, CIKM, pages 652–659. ACM,
2004.

[27] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
2002.

[28] Michael R. Genesereth. Knowledge interchange format. In KR, pages 599–600,
1991.

[29] W3C OWL Working Group. OWL 2 Web Ontology Language Docu-
ment Overview, June 2009. Available at http://www.w3.org/TR/
owl2-overview/.

[30] Andreas Harth, Jürgen Umbrich, and Stefan Decker. Multicrawler: A pipelined
architecture for crawling and indexing semantic web data. In 5th Int.l Semantic
Web Conference, Athens, GA, USA, November 2006.

[31] Michael Hausenblas. Exploiting linked data to build web applications. IEEE
Internet Computing, 13(4):68–73, 2009.

[32] Michael Hausenblas. Linked data applications. Tech. Report DERI-TR-2009-07-
26, DERI, July 2009.

[33] Patrick Hayes. RDF semantics. Technical report, W3C, February 2004. W3C
Recommendation.

[34] Aidan Hogan, Andreas Harth, and Axel Polleres. SAOR: Authoritative Reasoning
for the Web. In ASWC 2008, pages 76–90, 2008.

[35] Aidan Hogan, Andreas Harth, and Axel Polleres. Scalable authoritative owl rea-
soning for the web. International Journal on Semantic Web and Information
Systems, 5(2), 2009.

64

[36] Yuhui Jin, Stefan Decker, and Gio Wiederhold. Ontowebber: Model-driven
ontology-based web site management. In Isabel F. Cruz, Stefan Decker, Jérôme
Euzenat, and Deborah L. McGuinness, editors, SWWS, pages 529–547, 2001.

[37] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-
oriented and frame-based languages. Journal of the ACM, 42(4):741–843, 1995.

[38] Kjetil Kjernsmo and Alexandre Passant. SPARQL New Features and
Rationale, July 2009. Available at http://www.w3.org/TR/2009/
WD-sparql-features-20090702/.

[39] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF):
Concepts and Abstract Syntax. Technical report, W3C, February 2004. W3C
Recommendation.

[40] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and Mark A. Musen. The
Protégé OWL Plugin: An open development environment for semantic web ap-
plications. The Semantic Web - ISWC 2004, 3298/2004:229–243, 2004.

[41] Ora Lassila and Ralph Swick (eds.). Resource Description Frame-
work (RDF) Model and Syntax Specification, February 1999. W3C
Recommendation, available at http://www.w3.org/TR/1999/
REC-rdf-syntax-19990222/.

[42] Danh Le-Phuoc, Axel Polleres, Manfred Hauswirth, Giovanni Tummarello, and
Christian Morbidoni. Rapid prototyping of semantic mash-ups through semantic
web pipes. In 18th International World Wide Web Conference (WWW2009), April
2009.

[43] Douglas B. Lenat and Ramanathan V. Guha. The evolution of cycl, the cyc rep-
resentation language. SIGART Bulletin, 2(3):84–87, 1991.

[44] Robert W.P. Luk, H. V. Leong, Tharam S. Dillon, Alvin T.S. Chan, W. Bruce
Croft, and James Allan. A survey in indexing and searching xml documents. Jour-
nal of the American Society for Information Science and Technology, 53(6):415–
437, 2002.

[45] James Mayfield and Tim Finin. Information retrieval on the Semantic Web: Inte-
grating inference and retrieval. In SIGIR Workshop on the Semantic Web, August
2003.

[46] Alistair Miles and Sean Bechhofer (eds.). SKOS Simple Knowledge Organization
System Reference, March 2009. W3C Candidate Recommendation, available at
http://www.w3.org/TR/2009/CR-skos-reference-20090317/.

[47] Eyal Oren, Renaud Delbru, Michele Catasta, Richard Cyganiak, Holger Sten-
zhorn, and Giovanni Tummarello. Sindice.com: A document-oriented lookup
index for open linked data. International Journal of Metadata, Semantics and
Ontologies, 3(1), 2008.

65

[48] Eyal Oren, Renaud Delbru, Sebastian Gerke, Armin Haller, and Stefan Decker.
ActiveRDF: object-oriented semantic web programming. In Carey L. Williamson,
Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy, editors,
WWW, pages 817–824. ACM, 2007.

[49] Alexandre Passant and Philippe Laublet. Meaning of a tag: A collaborative ap-
proach to bridge the gap between tagging and linked data. In Proceedings of the
Linked Data on the Web Workshop (LDOW2008) at the 17th International World
Wide Web Conference (WWW2008), Beijing, China, April 2008.

[50] Alexandre Passant and Philippe Laublet. Towards an interlinked semantic
wiki farm. In 3rd Semantic Wiki Workshop (SemWiki2008) co-located with
ESWC2008, May 2008.

[51] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF,
January 2008. W3C Recommendation, available at http://www.w3.org/
TR/rdf-sparql-query/.

[52] Alan Ruttenberg, Jonathan Rees, Matthias Samwald, and M Scott Marshall. Life
sciences on the semantic web: the neurocommons and beyond. Briefings in Bioin-
formatics, Epub 2009 Mar 12, pages 10(2):193–204, March 2009.

[53] Satya Sahoo, Wolfgang Halb, Sebastian Hellmann, Kingsley Idehen, Ted Thi-
bodeau Jr, Sören Auer, Juan Sequeda, and Ahmed Ezzat. A Survey of Cur-
rent Approaches for Mapping of Relational Databases to RDF. Available at
http://esw.w3.org/topic/Rdb2RdfXG/StateOfTheArt.

[54] Sebastian Schaffert. IkeWiki: A Semantic Wiki for Collaborative Knowledge
Management. In 1st International Workshop on Semantic Technologies in Col-
laborative Applications (STICA’06), Manchester, UK, June 2006.

[55] Ric Shreves. Open Source CMS Market Share. White paper, Wa-
ter & Stone. http://waterandstone.com/downloads/
2008OpenSourceCMSMarketSurvey.pdf.

[56] Katharina Siorpaes and Martin Hepp. myOntology: The marriage of ontology
engineering and collective intelligence. In ESWC 2007 Workshop Bridging the
Gap between Semantic Web and Web 2.0, 2007.

[57] S. Staab, J. Angele, S. Decker, M. Erdmann, A. Hotho, A. Maedche, H. P.
Schnurr, R. Studer, and Y. Sure. Semantic community web portals. Computer
Networks, 33(1-6):473 – 491, 2000.

[58] Ljiljana Stojanovic, Nenad Stojanovic, and Raphael Volz. Migrating data-
intensive web sites into the semantic web. In SAC ’02: Proceedings of the 2002
ACM symposium on Applied computing, pages 1100–1107, New York, NY, USA,
2002. ACM.

66

[59] Nickolai Toupikov, Juergen Umbrich, Renaud Delbru, Michael Hausenblas, and
Giovanni Tummarello. DING! Dataset Ranking using Formal Descriptions. In
Linked Data on the Web Workshop (LDOW09), WWW09, Madrid, Spain, 2009.

[60] Louis Weitzman, Alister Lewis-Bowen, and Stephen Evanchik. Using open
source software to design, develop, and deploy a collaborative web site, part 1:
Introduction and overview, July 2006.

[61] Steve Williams. What is a content management system, or cms? http://www.
contentmanager.eu.com/history.htm.

67

Appendix A

Namespaces

The following namespaces are used throughout this thesis.

@prefix : <http://example.org/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix rel: <http://purl.org/vocab/relationship/> .
@prefix content: <http://purl.org/rss/1.0/modules/content/> .
@prefix drupal: <http://drupal.org/ns/> .

68

Appendix B

Drupal RDF Content
Construction Kit evaluation

This appendix presents the questionnaires and documentation our test users have been
given to carry out the evaluation presented in Chapter 4.

B.1 Introduction
In this evaluation you will be asked to set up a simple content model on a Drupal site.
In the end you will map this content model to RDF classes and properties. This guide
will give you the information you need to know and the bacis steps to follow in order
to achieve this. We will measure the time you need to do each section of this set up.
Thanks in advance for your patience. The use case is a site containing information
about Editors and the Articles they wrote.

B.2 Content Construction Kit
Each item of content in Drupal is called a node. Nodes usually correspond to the pages
of a site. Nodes can be created, edited and deleted by content authors.

The Content Construction Kit (CCK) is one of the most popular modules used on
Drupal sites. It allows the site administrator to define types of nodes, called content
types, and to define fields for each content type. Fields can be of different kinds such
as plain text fields, dates, email addresses, file uploads, or references to other nodes.
When defining content types and fields, the site administrator provides the following
information:

• label, ID, and description for content types and fields,

• fields can be optional or required,

• fields can have a maximum cardinality

69

• fields that reference other nodes can be restricted to nodes of a certain type.

B.3 Setting up the content model

B.3.1 Content types
1. In the administer section, click on the ”content types” link. This will display a

list of existing content types on the site.

2. Click on the tab ”Add content type”.

3. Enter the name of the first content type: Article.

4. Add a description such as ”An article is written by several editors”.

5. Leave the rest of the form as it is, and submit it by clicking on ”Save content
type”.

6. Create a second content type for Editor, and this time, open the fieldset ”submis-
sion form settings”. In the Title field label field, enter ”Name” instead of ”Title”.
Name will be the name of the editor, which will also be the name of the resource
(page). Make the Body field label empty.

70

7. Submit it by clicking on ”Save content type”.

B.3.2 Fields
We will now add fields to the newly created content types.

1. Click on the ”manage fields” for the Article content type. This will display a list
of fields for the Article content type. The greyed fields are the ones built in the
system.

2. Add a first field named ”Abstract” (the machine name has to be lower case). It
will be of type ”text” and the form element will be ”text area”.

3. Click on ”Save” at the bottom of the page. The second form allows to fine tune
the field. We will leave it as it is for now, click on ”Save field settings” at the
bottom of the form.

4. The second field to create for the Article content type is ”Editors”:

• type: Node reference

• form element: select list

5. on the next form for advanced settings, specify that this field is required and
choose ”unlimited” in the Number of values drop down list.

6. For the Content types that can be referenced field, choose ”Editor”.

7. Set up a new field ”Date of publication”:

71

• type: Date

• form element: select list

and use the default settings.

8. Change the order of the fields in the Article content type in the order that makes
sense to you (put the menu settings in the end).

9. Switch to the ”Editor” content type by clicking on ”content types” in the admin-
ister section like in step 1.

10. Add a field ”Picture” of type Image.

11. Add a field ”Homepage” of type Link.

12. Add a field ”Friends” of type Node Reference. For the Content types that can be
referenced field, choose ”Editor”.

B.4 Map the Content Model to RDF terms
1. Go to the fields of the Article content type (see step 3.2.1) and click on the tab

”Manage RDF mappings”.

2. This page includes autocomplete fields i.e. a list of matching values will be dis-
played as you type. Example: typing the characters ”pers” will list ”foaf:Person”...The
system already has several vocabularies imported: DC, SIOC, FOAF so you are
encouraged to reuse these.

3. Choose an RDF class mapping for the Article content type.

72

4. Do the same for each fields where possible.

5. Similarly, set up the mappings for the Editor content type.

End of the evaluation. Please fill in the questionnaire. Thanks for your patience!

B.5 Drupal RDF Content Construction Kit evaluation
- Questionnaire

1. Did you understand what you did and every single step of the process?

2. The goal of the evaluation is the measure how much extra effort is required to
setup the mapping compared to the initial effort of setting up the content model.
How did you find the mapping process compared to the initial content model
setup?

Strongly disagree Disagree Neutral Agree Strongly agree
Easy
Fast

Straight forward

3. Would you have something to say in order to improve the user interface or the
workflow to set up a content model and its mappings to RDF?

4. Would you have prefered to do the mappings during the initial set up process?
(while creating each content type and field)?

5. How did you find choosing the right mapping? Was it easy or did it require some
knowledge about RDF vocabularies?

6. Did you find the descriptions of the RDF terms useful for deciding what term to
choose?

7. in the case of the picture field, how did you choose the right property?

73

(a) you knew it by heart?

(b) you started typingand read the description

(c) started typing and chose the first choice

(d) other? please precise

B.6 Drupal RDF Content Construction Kit evaluation
- RDF Mappings

Use the following mappings to configure RDF CCK.

Article RDF class mapping: sioc:Post.

Field Mapping
Title dc:title
Editors dc:contributor
Date of Publication dc:date
Abstract dcterms:abstract
Body sioc:content

Editor RDF class mapping: sioc:User.

Field Mapping
Name foaf:name
Picture contributor
Homepage foaf:homepage
Friends foaf:knows

74

