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Abstract

This thesis explores how Deep Reinforcement Learning works. Deep
Reinforcement learning combines two approaches to Artificial Intelli-
gence, Deep Learning and Reinforcement Learning. For this reason,
the first part of this thesis discusses the fundamentals of Reinforcement
Learning. The second part continues with the theoretical minimum of
Deep Learning. The last part examines the landscape of modern Deep
Reinforcement Learning and discusses the most important algorithms
in depth. In summary, this thesis provides a solid understanding of
the fundamentals of Deep Reinforcement Learning and also explains
the most important innovations and breakthroughs of recent years.
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1 INTRODUCTION

1 Introduction

1.1 Research questions

How does Deep Reinforcement Learning work? How can we apply Deep
Reinforcement Learning?

1.2 Motivation

Deep Reinforcement Learning is a branch of Artificial Intelligence and refers
to the combination of Deep Learning and Reinforcement Learning.
Deep Learning is a subset of Machine Learning that uses Neural Networks
to learn data representations.
Reinforcement Learning is a machine learning approach which aims to teach
agents how to solve tasks by trial and error.
For many years scientist have been working on those three areas of Arti-
ficial Intelligence, but only in the recent years they have become widely
applicable. This happened mainly because of the availability of two driv-
ing forces: the necessary computing power and enormous amounts of data.
[Goodfellow et al., 2016, p.19-20] Nowadays, AI is increasingly becoming part
of our everyday lives. Deep learning based intelligent devices find their ways
into households. Smartphones and laptops are transitioning from pure work-
ing devices to intelligent assistants and support humans.
In 2015 Deep Reinforcement Learning algorithms were applied to Atari games
and outperformed human players [Mnih et al., 2015]. Since then, there have
been many advances in the field of Deep RL.
In 2016 the world champion in the game of Go, Lee Sedol, was defeated by Al-
phaGo, a Deep RL based agent developed by Google DeepMind. [Silver et al., 2016]
One year later, in 2017, AlphaZero, the successor of AlphaGo, beat the best
models in Chess and Shogi and of course also its predecessor, AlphaGo, at
the game of Go. AlphaZero achieved super-human performance through pure
self-play within twenty-four hours. [Silver et al., 2017]
In 2018, OpenAI‘s bot defeated the world‘s reigning champions in Dota2,
a real-time combat arena video game. [OpenAI, 2018] Furthermore, most
recently in 2019 the same happened to the world‘s best players in the game
of StarCraft, another strategic video game. [Vinyals et al., 2019]
Moving from simple and naive Atari games to complex strategy games like
Dota2 or StarCraft is a huge progress within less than four years.
Those achievements show that Deep Reinforcement learning is a powerful
multi-purpose technique. There is no doubt that the progress we have wit-
nessed has only been the beginning of what is to come. Deep Reinforcement
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1 INTRODUCTION

Learning will presumably play a central role in developing even more powerful
AI.

1.3 Methods and idea

In my bachelor thesis I will explore how Deep Reinforcement Learning works.
First, I will give an overview of the key mathematical underlying concepts.
This part will cover the basics of conventional Reinforcement learning (i.e.
Markov Decision Processes, Dynamic Programming, Monte Carlo Methods,
Temporal Difference Learning) and of Deep Learning (i.e. Neural Networks,
Gradient Descent, Backpropagation).
Then I will explore the landscape of modern algorithms used in Deep Re-
inforcement Learning. Here I will cover the underlyings for algorithms like
DQN (+ variants), A3C and PPO.

1.4 Why is that important?

As mentioned before, Artificial Intelligence has become pervasive in recent
years and this trend is very likely to continue. The architectures used have
become better and more specialized over time, as the field progressed. Most
current deep learning based systems learn from examples. They learn to ap-
proximate a certain function very well, but can only do just that. However,
those systems do not generalize well, which is a thing humans are certainly
really good at. None of the previously discussed systems would be able to
perform well in any other task, except the one they were trained and special-
ized on. Not a single speech recognition system could identify a single cat in
an image and neither OpenAI‘s Dota2 bot nor DeepMinds‘s StarCraft play-
ing AI would be able to make sense of a word in this thesis. Unfortunately,
they are not yet capable of building abstractive knowledge, i.e. they cannot
use knowledge gained from a previous task and apply it to another different
task. Current AI systems are narrow in their capabilities. Of course, we want
them to become broader. Deep Reinforcement Learning might be a central
component that helps us get there.

1.5 What is the contribution?

It is clear, that Deep Reinforcement Learning has huge potential. Currently,
Deep Reinforcement Learning has higher entry barriers than other research
areas. A lot of prerequisites are necessary and unfortunately most of the es-
sential knowledge is hidden in research papers. This Bachelor thesis, among
other goals, aims to facilitate the entry. Furthermore, as Deep Reinforcement
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2 OVERVIEW

Learning is a promising field, the more people enter it, the more can con-
tribute and the faster progress will be made. This thesis is my entry point
to the field, so the reader accompanies me on my journey of learning Deep
Reinforcement Learning.

2 Overview

Deep Reinforcement Learning is a branch of Machine Learning. Machine
learning enables computer systems to acquire knowledge by extracting pat-
terns from data. [Goodfellow et al., 2016, p. 2] Machine Learning can be
decomposed into three main categories: Supervised Learning, Unsupervised
Learning and Reinforcement Learning.
Supervised Learning techniques learn by example, i.e. they learn from la-
belled data. The term “supervised” originates from the fact that the labels
are assigned by a supervisor (a human being). [Goodfellow et al., 2016, p.
105] Given (millions of) different images with corresponding labels the neural
networks learns to classify them. For example, given an image of a cat with
a corresponding label "cat", it shall learn to classify this image and related
images as "cat". If it predicts "dog" it is told, that is wrong and given the
right answer, "cat". This is where the supervision and learning takes place.
In recent years there has been enormous progress with respect to those tech-
niques. Today they are widely applied and work very well in narrow tasks,
such as Image Classification, Object Detection, Speech Recognition or Lan-
guage Translation. Unfortunately, they require large amounts of training
signals, which implies human effort to annotate the data.
Unsupervised Learning is a paradigm, in which agents learn through observa-
tion. In contrast to supervised learning, no supervisor is involved. The algo-
rithm has to learn to make sense of the data on its own. [Goodfellow et al., 2016,
p. 105] Typically, the goal of unsupervised learning is to find a structure hid-
den in unlabelled data points. [Sutton and Barto, 1998, p.2]
“Reinforcement Learning is a computational approach to understanding and
automating goal-directed learning and decision making.” [Sutton and Barto, 1998,
p.13] Here learning takes place through direct interaction with the envi-
ronment. Whereas unsupervised learning tries to find hidden structure in
data, reinforcement learning tries to maximize the reward signal received.
[Sutton and Barto, 1998, p.2] Reinforcement Learning also differs from Su-
pervised Learning. As already mentioned, Supervised learning algorithms
learn from labelled training examples given (and labelled) by a supervisor
(human). The label clearly specifies the correct action to take (e.g. "cat" or
"dog"), given the example (e.g. image). Then the system learns to generalize
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3 REINFORCEMENT LEARNING

from the training data to situations that were previously not seen. However,
in Reinforcement learning it is hardly possible to accurately determine the
correctness of an action. They only are good or bad with respect to the
outcome. [Sutton and Barto, 1998, p.2]
In the following we will first explain the fundamentals of Reinforcement
Learning. Then we will continue with the theoretical minimum of Deep
Learning. Finally, we will discuss how these two approaches are connected
by illustrating some of the most important methods and most recent inno-
vations in Deep Reinforcement Learning.

3 Reinforcement Learning

3.1 Key concepts

Before we delve deeper into the more formal and mathematical part of this
chapter, we first need to define the most important elements and notions
of a reinforcement learning system. In Reinforcement Learning, the central
components are the agent and the environment. The agent is the decision-
maker or learner. The environment is the world, which the agent lives in and
interacts with. [Sutton and Barto, 1998, p.48]
The agent is situated in certain states within the environment and performs
actions to interact with it. Besides these main elements, there are four
important sub-elements: a policy, a reward, a value and a optional model.
[Sutton and Barto, 1998, p.6]
The policy defines how the agent behaves at a certain point in time. It maps
states in the environment to actions, i.e. it determines which action to take
at a particular state.
At each time step the agent receives a certain number, the reward signal,
from the environment. His objective is to maximize the cumulative reward
he obtains in the long run. Hence, the reward determines which events are
good and which are bad events for the agent. Therefore, the reward directly
influences the policy.[Sutton and Barto, 1998, p.6]
In contrast to the reward, which indicates what is beneficial for the agent
in an immediate sense, the value determines what is good in the long run.
The value of a state is the total cumulative reward the agent can expect to
obtain, starting at a certain state.
Another distinction: rewards are provided directly by the environment - val-
ues have to be estimated based on what the agents experiences over its entire
lifetime. [Sutton and Barto, 1998, p.6]
Finally, we have the concept of the model which is learned from the envi-
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3 REINFORCEMENT LEARNING

ronment. The model makes predictions about state transitions and rewards,
i.e. how the environment will behave. Models are used to plan ahead into
the future. They allow the agent to consider situations that have not yet
occurred.
Whether an agent does or does not learn and use a model of the environ-
ment is one of the most important distinctions between different kinds of
Reinforcement learning algorithms. Methods that learn and use a model are
called model-based. Methods that do not learn and use a model are called
model-free. [Sutton and Barto, 1998, p.7] More on that in chapter 5.
We have now defined the most crucial terms. However, we will define further
terms as we progress and as they become necessary.

In this chapter, we will first explain tabular solution methods, i.e. meth-
ods for which the state space (all possible states) and the action space (all
possible actions to perform) are small, so that the value functions can be
represented as arrays and tables. For such methods it is often possible to
find exact solutions.
Approximate solution methods will be the topic of the chapter Deep Rein-
forcement Learning.

3.2 Markov decision processes

The general problem of reinforcement learning is formalized by Markov Deci-
sion Processes. [Bellman, 1957] [Howard, 1960] The basic idea is to capture
the most important aspects of the real problem which an actor who inter-
acts with his environment in order to achieve a certain goal, faces over time.
[Sutton and Barto, 1998, p.2] To achieve this, the agent must be able to sense
the state of the environment he interacts with, at least to some extent. In
addition, the agent must be able to take actions within the environment, so
that he can influence the state of it. Finally, the agent needs to pursue a
particular goal (or multiple goals) which is (are) related to a specific state of
the environment. [Sutton and Barto, 1998, p.2]
These 3 aspects (sensation, action, goal) are formalized by Markov Decision
Processes and are the subject of this chapter.
In the previous chapter we have already defined the necessary terms on a
conceptual level. Now we will define them in a more formal way.
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3 REINFORCEMENT LEARNING

Figure 1: The agent-environment interaction in a Markov decision process,
from [Sutton and Barto, 1998, p. 48]

As stated before, the agent is situated in an environment and interacts with
it at every time step, t. At each step t the agent finds itself in a certain state,
St 2 S, where S is the state space. Based on St the agent selects action,
At 2 A, where A is the action space.
As a result of the selected action, in t+1 the agent receives a reward, Rt 2 R ⇢
R and finds itself in a new state, St+1. Repeating this decision process several
times gives the trajectory, ⌧ , a sequence of state-action-reward triplets:

S0, A0, R1, S1, A1, R2, S2, A2, R3, ... (3.1)

In the case of finite Markov Decision Processes S,A and R are finite. Hence
Rt and St have well defined probability distributions, which only depend on
previous state and action. Therefore, at time step t, given previous state and
action, the random variables s0 2 S and r 2 R have a certain probability of
occurring:

p(s0, r | s, a) .
= Pr {St = s0, Rt = r | St�1 = s, At�1 = a)} (3.2)

For 8s0, s 2 S, r 2 R and a 2 A. Here s and a denote the observed state and
taken action at time step t. s0 and r denote the observed state and received
reward in t+1, i.e. those are the results of taking action a in state s at time
step t. p denotes the dynamics of our Markov Decision Process. In a Markov
Decision Process, the probability of each value for St and Rt only depend on
St�1 and Rt�1. This is called the markov property. Similar as above, we can
compute the state-transition probabilities:

p(s0 | s, a) .
= Pr {St = s0 | St�1 = s, At�1 = a} =

X

r2R

p(s0, r | s, a) (3.3)
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3 REINFORCEMENT LEARNING

Furthermore, a state s is markovian (i.e. “posesses” the markov property)
iff:

p(s0 | s, a) = p(s0 | ⌧, a) (3.4)

We can also compute the expected rewards for state-action pairs:

r(s, a)
.
= E [Rt | St�1 = s, At�1 = a] =

X

r2R

r
X

s02S

p(s0, r | s, a) (3.5)

Before it was stated, that the agent’s goal is to maximize its cumulative
expected reward. The cumulative reward is denoted as the return, Gt. Math-
ematically the return is defined as:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + ... =

1X

k=0

�kRt+k+1 (3.6)

In fact (3.6) defines the expected discounted return, where � denotes the
discount factor with 0  �  1. The intuition behind discounting, is that
immediate rewards are better than rewards received multiple time steps in
the future. An analogy from finance would be that is better to receive 10
Million Euros today, than to receive 10 Million Euros in 1000 years. Since in
1000 years one could be dead.

The policy, ⇡, maps states to probabilities of selecting each possible action.
Hence, if the agent follows policy ⇡ the probability at time step t of action
At = a given, that St = s is defined as ⇡(a | s). [Sutton and Barto, 1998,
p.58]
The value function tells how good a certain state is and is defined in terms
of the expected return. Of course, the expected return is influenced by which
actions are taken and which actions are taken is defined by the policy, ⇡.
Therefore, value function,V⇡(s), of state s following policy ⇡ is defined as:

V⇡(s)
.
= E

⇡
[Gt | St = s] = E

⇡

" 1X

k=0

�kRt+k+1 | St = s

#
(3.7)

Equation (3.7) is called the state-value function for policy, ⇡.
A important property of value functions in general is, that they satisfy re-
cursive relationships. Gt could be re-expressed as the sum of the immediate
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3 REINFORCEMENT LEARNING

reward Rt+1 and the return at the next time step Gt+1:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + ...

= Rt+1 + �(Rt+2 + �Rt+3 + ...)

= Rt+1 + �Gt+1

(3.8)

Now, we can exchange Gt in Equation (3.7) for our newly defined Gt in (3.8).
Then:

V⇡(s)
.
= E

⇡
[Rt+1 + �Gt+1 | St = s]

=
X

a

⇡(a | s)
X

s0

X

r

p(s0, r | s, a)

r + � E

⇡
[Gt+1 | St+1 = s0]

�

=
X

a

⇡(a | s)
X

s0,r

p(s0, r | s, a) [r + �V⇡(s
0)]

= E
⇡
[Rt+1 + �V⇡(St+1) | St = s]

(3.9)

The important thing is that in the last line we could exchange E⇡ [Gt+1 | St+1 = s0]
for V⇡(s0), which specifies the recursive relationship. This means that the
state-value function is defined in terms of itself. Equation (3.9) is known as
the Bellman equation for V⇡. [Bellman, 1954]

Similar to Equation (3.7), we can define the action-value function for policy
⇡, which is denoted by Q⇡. Q⇡ represents the value of taking action a in
state s following policy ⇡. Intuitively Q⇡ determines how good it is to choose
a certain action, when situated in a given state:

Q⇡(s, a)
.
= E

⇡
[Gt | St = s, At = a] = E

⇡

" 1X

k=0

�kRt+k+1 | St = s, At = a

#

(3.10)

Both, the state-value function and the action-value function are crucial con-
cepts in Reinforcement Learning, and will appear throughout this thesis.
Fortunately, both of them, V⇡ and Q⇡ can be estimated from experience.
This will be the topic of the section on Monte Carlo Methods and the chap-
ter on Deep Reinforcement Learning.

Furthermore, as in Equation (3.9) we can exchange Gt for (3.8) and we get
the Bellman equation for action-values :

8



3 REINFORCEMENT LEARNING

Q⇡(s, a)
.
= E

⇡
[Rt+1 + �Gt+1 | St = s, At = a]

=
X

s0,r

p(s0, r | s, a)

r + � E

⇡
[Gt+1 | St+1 = s0]

�

=
X

s0,r

p(s0, r | s, a) [r + �V⇡(s
0)]

= E [Rt+1 + �V⇡(St+1) | St = s, At = a]

(3.11)

In order to achieve the best possible outcome, i.e. to receive the highest
reward in the long run, one has to find the optimal policy. For a policy ⇡ to
be better than or equal to another policy ⇡0, its expected return has to be
greater than or equal for all states. Therefore, ⇡ � ⇡0 iff V⇡(s) � V⇡0(s).
The optimal policy has to better than any other policy and is denoted by ⇡⇤.
Likewise, the optimal state-value function is denoted V⇤:

V⇤(s)
.
= max

⇡
V⇡(s) (3.12)

The optimal action-value function, Q⇤ is defined similarly:

Q⇤(s, a)
.
= max

⇡
Q⇡(s, a) (3.13)

Using Equation (3.11) we can rewrite the Equation (3.13) in terms of V⇤ as:

Q⇤(s, a)
.
= E

⇡
[Rt+1 + �V⇤(St+1) | St = s, At = a] (3.14)

Now, we can use the recursive property again to get the Bellman optimality
equation for V⇤:

V⇤(a)
.
= max

⇡
V⇡(s)

= max
a

Q⇡⇤(s, a)

= max
a

E
⇡⇤
[Rt+1 + �Gt+1 | St = s, At = a]

= max
a

E [Rt+1 + �V⇤(St+1) | St = s, At = a]

= max
a

X

s0,r

p(s0, r | s, a) [r + �V⇤(s
0)]

(3.15)
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3 REINFORCEMENT LEARNING

Likewise, we can express the Bellman optimality equation for Q⇤ as:

Q⇤(s, a) = E
h
Rt+1 + �max

a0
Q⇤(St+1, a

0) | St = s, At = a
i

=
X

s0,r

p(s0, r | s, a)
h
r + �max

a0
Q⇤(s

0, a0)
i (3.16)

The Bellman equations allow us to solve a Markov Decision Process in a
optimal manner. Dynamic Programming is a technique to compute the so-
lution and will be the topic of the next chapter. Unfortunately, however,
the availability of that solution relies on three assumptions, which are hardly
given in reality [Sutton and Barto, 1998, p. 66]:

• dynamics of the environment are known

• enough computational resources are available

• the Markov property

For this reason, it usually has to be approximated, which will be the topic of
later chapters.

3.3 Dynamic Programming

3.3.1 Overview

“The term dynamic programming refers to a collection of algorithms that
can be used to compute optimal policies given a perfect model of the en-
vironment as a Markov decision process.” [Sutton and Barto, 1998, p. 73]
However, they assume that a perfect model of the environment is available
(i.e. that its true dynamics are known) and require enormous computational
efforts. Nevertheless, they are theoretically very important and enable us to
understand further topics. The basic idea of Dynamic Programming methods
is to use value functions to search for good policies. [Sutton and Barto, 1998,
p. 73].

3.3.2 Policy evaluation

The first important algorithm is called Policy evaluation and allows us to
compute the state-value function V⇡ for an arbitrary policy ⇡[Sutton and Barto, 1998,
p. 74]. Policy evaluation applies the Bellman equation for state values as

10



3 REINFORCEMENT LEARNING

defined in Equation (3.9). In the beginning, V is initialized arbitrarily, for
example to zero. Then one iterates all states and computes the state value
using (3.9). The resulting value can be compared to the previous value and
the difference between them, � , is stored. The smaller� , the better, since if
the values do not change (much), one assumes that the true value is reached.
Once � gets below a certain threshold, ✓, we stop iterating. Table 1 shows
the algorithm for policy evaluation.

Algorithm 1: Policy evaluation
Input: policy ⇡ , threshold parameter ✓
Output: V ⇡ V⇡

Initialize V (s) arbitrarily, 8s 2 S+, V (s) = 0
repeat

� 0
for s 2 S do

v  V (s)
V (s) 

P
a ⇡(a | s)

P
s0,r p(s

0, r | s, a) [r + �V (s0)]

� max(�, |v � V (s)|)
end

until � < ✓

Table 1: Policy evaluation

3.3.3 Policy improvement

The next important algorithm is called policy improvement, which as the
name already hints, helps to find better policies. [Sutton and Barto, 1998,
p. 76]
Its idea is to consider selecting at state s an action a 6= ⇡(s) (i.e. an action
that does not follow the current policy) and thereafter again following ⇡.
This can be expressed as:

Q⇡(s, a) = E [Rt+1 + �V⇡(St+1) | St = s, At = a]

=
X

s0,r

p(s0, r | s, a) [r + �V⇡(s
0)] (3.17)

For it to be better this value has to be greater than V⇡(s). Now, in the
more general case for all possible states s 2 (S), for ⇡0 to be better than ⇡,
Q⇡(s, ⇡0(s)) � V⇡(s).
This can be further generalized to include all possible actions. If one than

11
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acts greedily, i.e. chooses the best possible action w.r.t. Q⇡(s, a) one obtains
⇡0, the new policy:

⇡0(s)
.
= argmax

a
Q⇡(s, a)

= argmax
a

E [Rt+1 + �V⇡(St+1) | St = s, At = a]

= argmax
a

X

s0,r

p(s0, r | s, a) [r + �V⇡(s
0)]

(3.18)

The algorithm is shown in Table 2

Algorithm 2: Policy improvement
Input: value function V
Output: policy ⇡0

for s 2 S do

for a 2 A(s) do

Q(s, a) 
P

s0,r p(s
0, r | s, a) [r + �V (s0)]

end

⇡0(s) argmaxa Q(s, a)
end

return ⇡0

Table 2: Policy improvement

3.3.4 Policy iteration

The third important algorithm in dynamic programming combines Policy
evaluation and Policy improvement and is called Policy Iteration. First policy
evaluation is performed followed by policy improvement. This process is
repeated until the policy is stable which leads to a sequence of improving
policies and value functions.

⇡0
E�! v⇡0

I�! ⇡1
E�! v⇡1

I�! ⇡2
E�! ...

I�! ⇡⇤
I�! v⇤ (3.19)

The policy iteration algorithm is shown in Table 9 in the Appendix.

3.3.5 Value iteration

Furthermore, we could use the Bellman Optimality equation for V⇤ (3.15)
as an update in policy evaluation. The resulting algorithm, that contains
this modification, is called value iteration. It is shown in Table 10 in the
Appendix.
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3.4 Monte carlo methods

3.4.1 Overview

In the previous chapter it was mentioned that the value function can be
estimated using Monte Carlo Methods. Monte Carlo Methods do not require
a complete model of the environment. They learn purely from actual or
simulated experience. The idea of Monte Carlo Methods is simple: sample
from the experience, then average the returns obtained for each state-action
pair. [Sutton and Barto, 1998, p. 91]

3.4.2 Monte Carlo prediction for state values

First, we will explore how to estimate the state-value function V⇡ for a given
policy ⇡. There are two methods to accomplish that.
First visit Monte Carlo Prediction, as shown in Algorithm 3, estimates V⇡(s)
as the average of the obtained returns following first visits to a state s.

Algorithm 3: First Visit Monte Carlo Prediction for state values
Input: policy ⇡ , num_of_episodes
Output: V ⇡ v⇡
Initialize V (s) arbitrarily, 8s 2 S
Initialize Returns(s) empty list, for all s 2 S
for i 0 to num_of_episodes do

Generate episode following ⇡:
S0, A0, R1, S1, A1, R2, ..., ST�1, AT�1, RT

G 0
for t 0 to T � 1 do

G �G+Rt+1

if St in S0, S1, ..., St�1 then

Append G to Returns(St)
V (St) average(Returns(St))

end

end

return V

Table 3: First Visit Monte Carlo Prediction for state values

Similarly, Every visit Monte Carlo Prediction estimates V⇡(s) as the average
of the obtained returns following all visits to a state s. [Sutton and Barto, 1998,
p.92]

13
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3.4.3 Monte Carlo prediction for action values

Monte Carlo Methods are typically used when no model of the environment
is available. If this is the case, estimating action values is especially useful.
Therefore, Monte Carlo Methods aim to estimate Q⇤. As mentioned earlier,
we can do this by first visit. This means, that the value of a state action
pair is estimated as the average of all the returns following the first time in
each episode that the state was visited and the action selected. The every
visit method works similarly, but for every visit, not just the first visit. The
algorithm for first visit Monte Carlo prediction for action values is shown in
Algorithm 11 in the Appendix.
As the episodes are generated by following policy ⇡ and only the state-action
pairs that were already visited have a value so far, those will be favoured
again in the next iteration. Therefore, other state-action pairs may never be
visited at all. For this reason, we can specify that the episodes must start in
a certain state action pair and that each pair has a non-zero probability of
being selected as the start pair. This is called exploring starts and is used in
the next algorithm.

3.4.4 Monte Carlo control

Of course, as in Section 3.3.4 the goal is to find the optimal policy. The
algorithm to find the optimal policy is called Monte carlo control and is
shown in Table 12.

3.5 Temporal Difference Learning

In this chapter we will explore Temporal Difference Learning, which combines
the ideas of Section 3.3 Dynamic Programming and Section 3.4 Monte Carlo
Methods. Temporal Difference Learning is model free as Monte Carlo Meth-
ods. Furthermore, it updates the estimates based on other estimates (boot-
strapping), like Dynamic Programming methods do. [Sutton and Barto, 1998,
p.119]

3.5.1 TD Prediction

As in previous chapters, the goal is to estimate the value function V⇡ for a
given policy ⇡. [Sutton and Barto, 1998, p. 119] Both, Monte Carlo Methods
and Temporal Difference Learning methods learn from experience. While
Monte Carlo Methods have to wait until the end of the episode to update
V (St), Temporal Difference Learning methods only wait until the next time

14
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step. This is called online learning. The update of V (St) can be expressed
as:

V (St) V (St) + ↵ [Rt+1 + �V (St+1)� V (St)] (3.20)

Where ↵ is a parameter for the step-size (i.e. it indicates how strong the up-
date will be). This is called one-step Temporal difference or TD(0). It can
be extended to n-steps TD(�), where � represents the number of steps. An
important thing to mention is that the expression Rt+1 + �V (St+1)� V (St)
denotes the TD-Error, �. It measures the difference between the previously
estimated value of St and the better estimate Rt+1 + �V (St+1) and is impor-
tant throughout reinforcement learning. [Sutton and Barto, 1998, p. 121]
The algorithm itself is simple. As always, we take an action following ⇡
and observe the new state obtained reward. Then we perform the update
for V (S) as defined in Equation 3.20. Those steps are repeated until the
observed state is terminal. TD(0) is shown in Table 4:

Algorithm 4: TD(0)

Input: policy ⇡, step-size ↵ 2 (0, 1], num_of_episodes
Output: V ⇡ V⇡

Initialize V (s) arbitrarily, 8s 2 S+

for i 0 to num_of_episodes do

Initialize S
foreach step in episode do

A action given by ⇡ for S
Take action A, observe R and S 0

V (S) V (S) + ↵ [R + �V (S 0)� V (S)]
S  S 0

end

end

return V

Table 4: TD(0)

3.5.2 On-policy vs. Off-policy

In the next two chapters we will have a look at two different algorithms,
Sarsa and Q-Learning. While Sarsa is on-policy, Q-Learning is an off-policy
algorithm. Therefore, it is time to define those two terms.
In general, learning control methods try to learn the optimal policy. But in
order to learn the optimal policy, they have to behave in a non-optimal way,
such that they can explore the whole action space. [Sutton and Barto, 1998,
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p.103]
On-policy methods try to learn action values for the optimal policy, but for
a near-optimal policy that still explores. [Sutton and Barto, 1998, p. 103]
All algorithms we have discussed so far were on-policy.
Off-policy methods use two separate policies, a behaviour policy and a target
policy. The behaviour policy is used to generate behaviour and to explore.
The target policy is the policy that is learned and ultimately becomes the
optimal policy. Since the learning process is separated from data generation,
this approach is off-policy. [Sutton and Barto, 1998, p. 104]

3.5.3 Sarsa

Now that we know the conceptual difference between on-policy and off-policy,
we can move on to another on-policy algorithm called Sarsa. [Sutton and Barto, 1998,
p. 129]
Previously, in Section 3.5.1 we defined the update for state-values. But Sarsa
uses the update for state-action pairs, which is defined as:

Q(St, At) Q(St, At) + ↵ [Rt+1 + �Q(St+1, At+1)�Q(St, At)] (3.21)

The update rule, as defined in Equation 3.21, uses the current state-action
pair, the reward received and the next state-action pair, i.e. (St, At, Rt+1, St+1, At+1).
Hence, the name Sarsa. The rest of the algorithm is similar to the previous
one, as Table 13 shows.

3.5.4 Q-Learning

Moving on to the off-policy control version, Q-Learning. [Watkins and Dayan, 1992]
[Sutton and Barto, 1998, p. 131] In fact, the algorithm for Q-Learning in Ta-
ble 14 differs from Sarsa only in two important points. First, the update is
different:

Q(St, At) Q(St, At) + ↵
h
Rt+1 + �max

a
Q(St+1, a)�Q(St, At)

i
(3.22)

The second subtle difference is, that we select A at S using Q within the
second for-loop and not within the first loop as before.
In Section 5.2 we will discuss the ideas of Q-Learning in more detail.
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4 Deep Learning

4.1 Overview

Deep Learning is as Reinforcement Learning a part of the broader fam-
ily of Machine Learning. Even though the origins of Deep Learning date
back to the 1940s [Mcculloch and Pitts, 1943], it has only recently become
widely applicable, as mentioned in the beginning of this thesis. Today, Deep
Learning is at the heart of most of the major developments in Artificial
Intelligence, such as Computer Vision [Real et al., 2018], [Li et al., 2019],
Speech Recognition [Park et al., 2019] and Natural Language Understanding
[Radford et al., 2019]. In this chapter the essentials of Deep Learning will
be explained, s.t. we can establish the link between Reinforcement Learning
and Deep Learning in the next chapter.

4.2 Deep Feedfoward Networks

“Deep feedforward networks, also often called feedforward neural networks, or
multilayer perceptrons (MLPs), are the quintessential deep learning models.”
[Goodfellow et al., 2016, p. 167]
In general, Deep feedforward networks (and Neural Networks in general) aim
to approximate a certain function f ⇤. In fact, they are also called Univer-
sal function approximators due to their ability to approximate any arbitrary
function. [Hornik et al., 1989]

Figure 2: Feedforward Neural Network, from [Nielsen, 2018, p.11]

Typically, feedforward neural networks are arranged in layers, which is why
they are called networks. Mathematically this can be represented as a func-
tion composition, e.g. for three functions f (3), f (2), f (1) as f(x) = f (3)(f (2)(f (1)(x)))
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(or like this f3(f2(f1(x)))). [Goodfellow et al., 2016, p. 167] In general, this
composition can be represented as f(x) = f (n)(f (n�1)(...(f (1)(x)))). Compos-
ing many functions makes it possible to represent very complicated functions.
The innermost function is called input layer (here f (1)). It receives the input
to the network. The outermost function output layer (here f (3)) returns the
output of the network. The functions in between are called hidden layers
(here only f (2)).
The information flows from the input layer forward through the hidden lay-
ers to the output layer. Therefore, feedforward. Furthermore, the multilayer
structure defines the depth of the network. Combined with the fact that
Neural Networks aim to learn a certain function f ⇤, we arrive at the term
Deep Learning. [Goodfellow et al., 2016, p.167]

In general, a simple layer is defined as:

y = g(
X

i

wixi + b) (4.1)

Or in matrix notation:
y = g(W Tx+ b) (4.2)

Where y 2 Rq⇥m is the output of the layer. W 2 Rq⇥p is the weight matrix
and b 2 Rq⇥m a bias term, which are both learned during training. x 2 Rp⇥m

is the input to the layer, and g is a non-linear differentiable activation func-
tion. Equation 4.2 is also referred to as a fully connected layer. Essentially,
it multiplies the input times the weights, adds a bias and then applies the
activation function (“input times weight, add a bias, activate.” [Raval, 2017])
Many different activation functions are available. For hidden layers the sim-
plest choice seems to work best in practice: Rectified Linear Unit, short
ReLU. [Glorot et al., 2011]
ReLU is defined as:

g(z) = max{0, z} (4.3)
i.e. simply activating if the input is greater than 0.

Figure 3: ReLU, from [Goodfellow et al., 2016, p. 174]
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Other activation functions, that are heavily used include the Sigmoid func-
tion, �(z) = 1

1+e�z , or the Hyperbolic tangent function, g(z) = tanh(z).
[Goodfellow et al., 2016, p. 194]
The choice of activation function is also crucial in the output layer. Depend-
ing on what problem has to be solved, different activation functions may be
suitable. If the aim is to predict the value of a binary variable y (i.e. 0, 1
or true, false) the sigmoid function is a prominent choice. In this case our
output is a single number ŷ 2 [0, 1]. ŷ could represent the probability that y
is of class 1 given input x:

ŷ = P (y = 1 | x) (4.4)

If we would like to output a probability distribution over n possible classes
instead, we can use the softmax function. In this case ŷ is a n-dimensional
vector, representing the probabilities of y being a certain class.

ŷ = P (y = i | x) (4.5)

The softmax function is defined as:

softmax(z)i =
eziP
j e

zj
(4.6)

The class with the highest probability is then the prediction of the output
layer. In practice, however, we are using maximum likelihood to train neural
networks. Therefore, we have to take the logarithm of the softmax function
and obtain:

log softmax(z)i = log zi � log
X

j

ezj (4.7)

4.3 Loss function

In order to make Neural Networks learn, one first has to define a method to
measure how good or bad the outputs produced by the network were. The
loss function is this measure. On the basis of the loss, one can then calculate
the gradients using backpropagation (the next chapter), which tell how the
networks parameters have to be updated, so that the loss is minimized and
the predictions improved.

Nowadays, most neural networks are trained using maximum likelihood. There-
fore, the cost function can be described by the negative log-likelihood, or
equivalently by the cross entropy between the training data and the outputs
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of the neural network. [Goodfellow et al., 2016, p. 177] So, this loss function
is given by:

J(✓) = � E
x,y⇠p̂data

h
log pmodel(y | x; ✓)

i
(4.8)

In this case, pmodel is the model distribution (i.e. the distribution represented
by the neural network) and p̂data the true distribution.
Another cost function that is heavily used is the mean squared error, which
is defined as:

J(✓) = E
x,y⇠p̂data

h
(y � f(x; ✓))2

i
(4.9)

Here, f(x; ✓) is the predictor, which produces the output ŷ for a given input
x. In both cases ✓ represents the parameters within the network.

4.4 Backpropagation

The Backpropagation algorithm allows us to compute the gradients of the
parameters in the network based on the loss value. [Rumelhart et al., 1986]
Later, these gradients are used to update the parameters, which is when the
network “learns”. In fact, Backpropagation actually only refers to computing
the gradients, while other algorithms, such as stochastic gradient descent,
are used to perform learning. [Goodfellow et al., 2016, p. 203]
Backpropagation relies on the Chain Rule to computer✓J(✓), the gradient of
the cost function, J(✓), with respect to ✓, the parameters in the network. In
practice, computing the gradients and applying them is taken care of by Deep
Learning Frameworks such as TensorFlow or PyTorch. [Abadi et al., 2015],
[Paszke et al., 2017]

4.5 Optimization

As stated previously, back-propagation refers only to the method for comput-
ing the gradient. Once computed, they can be applied to ✓, the parameters
within the network. In general, this update rule is defined as:

✓ = ✓ + ↵r✓J(✓) (4.10)

↵ is again the parameter which defines the step-size, also called learning rate.
In practice, Stochastic Gradient Descent and its variants are the most used
algorithms for optimization. [Goodfellow et al., 2016, p. 294]. Especially
the so called Adam optimizer is widely in use. [Kingma and Ba, 2014]
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4.6 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of architecture that was
originally developed to perform well on images. [LeCun et al., 1989]
Today, CNNs are the standard building blocks for Computer Vision appli-
cations. [Real et al., 2018], [Li et al., 2019] They also turned out to deliver
particularly good results on Natural Language tasks, such as Speech Recog-
nition. [Abdel-Hamid et al., 2014] ,[Zeghidour et al., 2018]
In Deep Reinforcement Learning, convolutional neural networks act as the
visual cortex of the agent. They allow the agent to perceive the environ-
ment which it interacts with. For example, they enable the agent to recog-
nize Go boards, StarCraft maps or the robotic arm that it has to control.
[Silver et al., 2017] [Vinyals et al., 2019] For this reason, these architectures
will play an essential role in the next chapter.

4.7 Further architectures

Finally, we would like to mention that there are of course other architectures
which have proven to perform very well in their domains.
Reccurent Neural Networks (RNN) are used to process sequential data. RNNs
[Rumelhart et al., 1986] and its variants, i.e. Long Short-Term Memory
Networks (LSTM) [Hochreiter and Schmidhuber, 1997] and Gated Recurrent
Networks (GRU) [Cho et al., 2014] are typically used for Natural Language
Processing (NLP) tasks.
Another type of architecture which was introduced recently is called Trans-
former. [Vaswani et al., 2017] Transformers use attention mechanisms and
have proven to outperform recurrent networks on specific domains.
[Devlin et al., 2018], [Radford et al., 2019].
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5 Deep Reinforcement Learning

5.1 Overview

Deep Reinforcement Learning methods use neural networks to approximate
the state-value function V , the action-value function Q, the policy ⇡ and/or
a model of the environment. In Chapter 3 Reinforcement Learning these
were represented by a table, but as state space S or action space A be-
come larger, this becomes intractable. Therefore, we aim to approximate
them by a parametric function which can be accomplished by various tech-
niques, such as Decision trees or different kinds of multivariate regression.
[Sutton and Barto, 1998, p. 198] However, in recent years Neural networks
have proven to outperform other approaches. As mentioned in chapter Deep
Learning, Neural networks are capable of approximating any function, due
to them being “Universal function approximators”. [Hornik et al., 1989] In
fact, we are trying to approximate the optimal functions or policy, i.e:

V (s; ✓) ⇡ V ⇤(s) (5.1)

for the state-value function - likewise for the action value function:

Q(s, a; ✓) ⇡ Q⇤(s, a) (5.2)

And the optimal policy:

⇡(a | s, ✓) ⇡ ⇡⇤(a | s) (5.3)

In all cases the variable ✓ denotes the parameters within the network which
are learned. Approximating using neural networks establishes the connection
between Reinforcement Learning and Deep Learning and gives rise to the
term Deep Reinforcement Learning.

Figure 4: Reinforcement Learning algorithms, from [Achiam, 2018]
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Figure 4 illustrates the main different types of Reinforcement Learning algo-
rithms, without being exhaustive. The first major distinction is, whether a
model of the environment is learned or not. Methods that learn and use a
model of the environment are called model-based, whereas methods that do
not learn a model are referred to as model-free, defined in Section 3.1.
More precisely, model-free methods learn the state-value function, the action-
value function or the policy from experience without an estimation of a world
model. [Dayan and Niv, 2008]
In contrast, in model-based methods a model of the environment is either
given or the experience is used “to construct and internal model of the tran-
sitions and immediate outcomes in the environment.” [Dayan and Niv, 2008]
Model-free methods are less sample efficient than model based methods, since
the availability of a model allows the agent to plan ahead and to search for
the appropriate action to take. [Dayan and Niv, 2008]. In most situations,
however, a ground truth model is not available or hard to learn. For this
reason, model-free methods currently are more popular and more widely ap-
plicable.
Both approaches can be further decomposed. Q-Learning and Policy Opti-
mization are the two main model-free methods. Q-Learning on the one hand
aims to approximate the optimal value function Q⇤(s, a) by Q(s, a; ✓). On
the other hand, Policy Optimization methods directly aim to approximate
by a parametrized policy ⇡(a | s, ✓). [Sutton and Barto, 1998, p.321]
In model-based RL we can further distinguish between methods that actu-
ally learn the model and methods for which a model is already available and
given, i.e. does not have to be learned.
In the following chapters, we will focus on model-free methods due to page
restrictions.

5.2 Q-Learning

The tabular case of Q-Learning has already been introduced in Section 3.5.4.
In this section we will first discuss a Q-learning method enhanced by Deep
Learning, Deep Q-Networks (DQN).
DQN was originally proposed by researchers at DeepMind in 2013. It learned
to play Atari games [Bellemare et al., 2015] through pure self-play and sur-
passed human performance in many of these games.[Mnih et al., 2013, Mnih et al., 2015]
Since then, several enhancements to the original DQN algorithm have been
proposed, which significantly improved the performance. The most signifi-
cant improvements include Double Q-learning [Hasselt et al., 2016], Prior-
itized replay [Schaul et al., 2016], Dueling networks [Wang et al., 2016c] ,
Mutli-step learning [Sutton, 1988, Sutton and Barto, 1998, Mnih et al., 2016],
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Distributional RL [Bellemare et al., 2017] and Noisy DQN [Fortunato et al., 2017].
It turned out that integrating these individual components into a single agent,
which was called Rainbow-DQN, yields particularly good results. [Hessel et al., 2017]
These extensions will also be discussed later in this chapter.

5.2.1 DQN

The goal of a Deep Q-Network is to learn control policies directly from high
dimensional sensory input (e.g. images) which are used to select actions that
ultimately maximize the cumulative future rewards Gt (3.6). [Mnih et al., 2013]
The optimal action-value function Q⇤(s, a), was defined in Equation 3.16 in
the chapter on Reinforcement Learning:

Q⇤(s, a) = E
h
Rt+1 + �max

a0
Q⇤(St+1, a

0) | St = s, At = a
i

(5.4)

As already stated, we aim to approximate it: Q⇤(s, a) ⇡ Q(s, a; ✓). The
approximate value function is represented by the Q-network, a convolutional
neural network (4.6) with ✓, the parameters in the network. This can be
achieved by training the Q-network to minimize the following mean squared
error (4.9):

Li(✓i) = E
(s,a,r,s0)⇠U(D)

h
(r + �max

a0
Q(s0, a0; ✓�i )�Q(s, a; ✓i))

2
i

(5.5)

Equation 5.5 contains the two most important ideas of DQN: experience re-
play [Lin, 1992] and a separate target-network.[Mnih et al., 2013, Mnih et al., 2015]
Sequences of observations (e.g. consecutive frames) are highly correlated i.e.
they are not i.i.d. This causes unstable learning. Maintaining an experience
replay, D, which stores the last N experiences diminishes this issue by ran-
domizing experiences and therefore breaking the correlation between them.
At every time step t the agent’s current experience et = (st, at, rt, st+1) is
saved to D. Then during the learning process experiences are sampled uni-
formly from the experience replay, (st, at, rt, st+1) ⇠ D.
Furthermore, ✓�i denotes the parameters, which are actually used to compute
the target at time step t. In fact, the target is given by:

Y = r + �max
a0

Q(s0, a0; ✓�i ) (5.6)

Therefore, this is also called target-network. On the other hand, ✓i, the
parameters of the online network, Q(s, a; ✓i), are kept up to date. This
illustrates the off-policy nature (3.5.2) of DQN. Every C time steps ✓�i is
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updated by ✓i, but kept fixed during other iterations. C is known as the
target network update frequency.
Li(✓i) is then optimized by stochastic gradient descent. Differentiating with
respect to ✓ gives the gradient:

r✓iLi(✓i) = E
(s,a,r,s0)⇠U(D)

h⇣
r + �max

a0
Q(s0, a0; ✓�i )�Q(s, a; ✓i)

⌘
r✓iQ(s, a; ✓i)

i

(5.7)

Another important fact is that the agent follows a ✏-greedy policy. This
means that at every step the agent acts either according to the policy or
randomly with probabilities 1� ✏ and ✏ respectively.

As mentioned earlier, DQN was originally tried on Atari games. Originally
those games have a resolution of 210⇥ 160 pixels with a 128 colour palette.
Since this can be computationally expensive the frames have to be prepro-
cessed. The preprocessing step is performed by a function �. Among other
steps � extracts the Y-channel and rescales it to 84 ⇥ 84. Furthermore, it
stacks the m = 4 most recent frames, which are then input to the network.
Stacking frames is crucial, since otherwise the game dynamics might not
be represented correctly. [Mnih et al., 2015] For example, in the game of
Breakout, one frame is not even enough to decide whether the ball will move
upwards or downwards.

Finally, we will briefly discuss the architecture of the neural network used in
[Mnih et al., 2015]. Generally, it consists of three convolutional layers (4.6)
followed and two fully connected layers (4.2). All layers except the output
layer use a ReLU as activation function.(4.3) As already mentioned, the input
to the network is a 84⇥84⇥4 stack, produced by �. The stack is received by
the first convolutional layer, which has 32 8⇥ 8 filter maps with stride = 4.
The second convolutional layer has 64 4 ⇥ 4 filters and a stride of 2. The
third convolutional layer has 64 3 ⇥ 3 filters and stride = 1. The first fully
connected layer consists of 512 units. Finally, the output layer has n output
units, with n corresponding to the number of possible actions (depending on
the game).
Considering all these tricks, the DQN-algorithm is given by:
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Algorithm 5: DQN
Input: capacity of experience replay N , number of episodes M ,

✏-greedy probability ✏, target network update frequency C
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights ✓

Initialize target action-value function Q̂ with weights ✓� = ✓
for episode 0 to M do

Initialize sequence s1 = x1 and preprocessed sequence �1 = �(s1)
for t 1 to T do

With probability ✏ select random action at
Otherwise select at = argmaxa Q(�(st), a; ✓)
Execute action at and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess �t+1 = �(st+1)
Store transition (�t, at, rt,�t+1) in D
Sample random minibatch (�j, aj, rj,�j+1) from D

yj =

(
rj if episode terminates at step j + 1

rj + �maxa0 Q̂(�j+1, a0; ✓�) otherwise
Perform a gradient descent step on (yj �Q(�j, aj; ✓))2 with
respect to ✓

Every C steps Q̂ = Q
end

end

Table 5: DQN, from [Mnih et al., 2015]

In the following chapters, Algorithm 5 will be extended and refined.

5.2.2 Double DQN

Based on earlier work on Double Q-learning [Hasselt, 2010], Double-DQN
was proposed.[Hasselt et al., 2016]
In Equation 5.5 the target is given by:

Y DQN = r + �max
a0

Q(s0, a0; ✓�i ) (5.8)

Since a0 is chosen by the target network, it can be rewritten as:

Y DQN = r + �Q(s0, argmax
a0

Q(s0, a0; ✓�i ); ✓
�
i ) (5.9)
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From 5.9 we see that the max operator uses the same values to select and eval-
uate an action which leads overoptimistic value estimates. The idea of Double
DQN is simple: split up selection and evaluation of the actions. Therefore, it
was proposed to evaluate the greedy policy according to the online network
and to use the target network to estimate its value. [Hasselt et al., 2016]
So, we only have to exchange ✓�i for ✓i in Equation 5.9:

Y DoubleDQN = r + �Q(s0, argmax
a0

Q(s0, a0; ✓i); ✓
�
i ) (5.10)

This simple change results in severe performance improvements. It reduces
overestimation and stabilizes the learning process. [Hasselt et al., 2016]

5.2.3 Prioritized experience replay

In the original DQN-paper [Mnih et al., 2015] the experiences were uniformly
sampled from the experience replay. Intuitively, however, it would make
sense to sample important experiences more frequently than irrelevant ones,
i.e. to prioritize them. For this reason, prioritized experience replay was
proposed.[Schaul et al., 2016]
Obviously a mechanism is needed which determines the importance of expe-
riences. This measure is based on the TD-error, �, as used in Equation 5.5.
Using the Double-DQN extension gives:

�i = r + �Q(s0, argmax
a0

Q(s0, a0; ✓i); ✓
�
i )�Q(s, a; ✓i) (5.11)

The magnitude of �i determines how much the actual value differs from the
next estimate, i.e. it indicates how surprising the transition is. This mea-
sure is denoted by pi and called the priority of transition i. It is defined by
pi = |�i| + ✏, where ✏ is a small constant which assures that no experience
has a probability of 0 being selected again, i.e. pi � 0.
However, greedy prioritization based on pi would lead to selecting the same
experiences over and over again. Therefore, a stochastic prioritization method
was proposed that interpolates between greedy prioritization and uniform
sampling [Schaul et al., 2016]:

P (i) =
p↵iP
k p

↵
k

(5.12)

The hyper parameter ↵ determines how much prioritization is used. Where
↵ = 1 and ↵ = 0 correspond to only selecting greedily and to only selecting in
a uniform way respectively. The problem with priority sampling is that the
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experiences used to compute the stochastic updates to estimate the expected
value, come from a different distribution than the actual expected value.
Therefore, importance-sampling weights are used additionally:

wi =
⇣ 1

N

1

P (i)

⌘�

(5.13)

Where N denotes the size of the experience replay, and hyperparameter �
determines how strongly the weight affects learning. � is annealed from its
initial value ([0, 1]) to 1. The gradient descent step in DQN is then performed
on wi�i (instead of only on �i) with respect to ✓.
To conclude this section, it was found that prioritized replay increases learn-
ing speed by a factor of two and significantly improved performance compared
with the original DQN and Double DQN. [Schaul et al., 2016]

5.2.4 Dueling DQN

In [Wang et al., 2016c] a new architecture was proposed, Dueling DQN. In
section 3.2, I already defined the state-value function (3.9), the action-value
function (3.11) and their optimality versions (3.15, 3.16). Another important
measure is called the advantage function, given by the difference of the action-
value function and state-value function:

A⇡(s, a) = Q⇡(s, a)� V⇡(s) (5.14)

Subtracting the value of a state from the value of choosing a certain action
in this state, gives the relative measure of the importance of each action, the
advantage. Now, the action-value function can be expressed as the sum of
state-value function and advantage function:

Q⇡(s, a) = A⇡(s, a) + V⇡(s) (5.15)

The above directly relates to the idea of Dueling DQN, which is to use one
estimator for the state-value function and another separate one for the state-
dependent advantage function. This can be achieved by using two streams of
fully connected layers (each stream consisting of two layers), instead of one
(as used in [Mnih et al., 2015]). One stream represents the state-value func-
tion, V (s; ✓, �), the other one represents the advantage function, A(s, a; ✓,↵).
With ↵ and � denoting the parameters of the fully connected layers in the
two separate streams and ✓ denoting the shared parameters of the convolu-
tional layers. In the end, both streams are combined to produce the output
Q-function:

Q(s, a; ✓,↵, �) = V (s; ✓, �) +
⇣
A(s, a; ✓,↵)� 1

|A|
X

a0

A(s, a0; ✓,↵)
⌘

(5.16)
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The big advantage of Dueling DQN is, that the proposed changes are imple-
mented as part of the network. For this reason, during the training process
the parameters are automatically computed by backpropagation and opti-
mized by gradient descent. [Wang et al., 2016c] In practice, this is taken
care of by TensorFlow or PyTorch.

5.2.5 Multi-step learning

When looking at equation 5.5 and 5.6 we see that only the immediate re-
ward r contributes to the target value. For this reason, Equation 5.6 is
called the one-step target. Actually, however, we can use future rewards
from multiple steps. This is the idea of multi-step learning, [Sutton, 1988],
[Sutton and Barto, 1998] and was used to extend DQN. [Mnih et al., 2016]
[Hessel et al., 2017] The n-step target is given by:

Yt:t+n =
n�1X

k=0

�k
t Rt+k+1 + �n

t max
a0

Q(St+n, a
0; ✓�t ) (5.17)

Consequently,
⇣
Yt:t+n �Q(s, a; ✓)

⌘2

has to be minimized.

5.2.6 Distributional RL

So far the approach was, to maximize the return via the optimal action-
value function 5.4. The Bellman equation for action-values can alternatively
be written as:

Q(s, a) = E(R(s, a)) + � E(Q(s0, a0)) (5.18)
[Bellemare et al., 2017] argues for modelling the full distribution of the re-
turn, to get a much richer picture of the situation:

Z(s, a)
D
= R(s, a) + �Z(S 0, A0)) (5.19)

Equation 5.19 is the distributional version of the Bellman equation for action-
values. The variable Z represents the distribution of the future rewards and
replaces Q. It is called the value distribution and is characterized by the
random variables R, S 0, A0 and Z(S 0, A0).
Furthermore, the authors proposed to use a discrete distribution to model the
value distribution. This distribution is based on the parametrized support z,
with zi = Vmin+i�z and�z = Vmax�Vmin

Natoms�1 . Where Natoms 2 N, Vmin, Vmax 2 R
and i 2 1, ..., Natoms.
The probabilities of each atom, i.e. each zi are given by:

Z✓(s, a) = zi with probability pi(s, a) =
e✓i(s,a)P
j e

✓j(s,a)
(5.20)
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The authors then propose, to project the sample Bellman update T̂ Z✓ onto
the support of Z✓. The bellman update for each atom zj is computed by
T̂ zj = r+�zj and its probability pj(s0, ⇡(s0)) is distributed to the immediate
neighbours of T̂ zj. We denote this projected update by �T̂ Z✓(s, a). The loss
function Ls,a(✓) is the cross entropy term of the Kullback-Leibler divergence:

DKL(�T̂ Z✓̃(s, a) || Z✓(s, a)) (5.21)

The whole algorithm is then given by:

Algorithm 6: Categorical Algorithm
Input: A transition st, at, rt, st+1, �t 2 [0, 1]
Q(st+1,a) =

P
i zipi(st+1, a)

a⇤  argmaxa Q(st+1, a)
mi = 0, i 2 [0, ..., N � 1]
for j 2 [0, ..., N � 1] do

T̂ zj  [rt + �tzj]
Vmax
Vmin

bj  T̂ � Vmin)/�z
l  bbjc
u dbje
ml  ml + pj(st+1, a⇤)(u� bj)
mu  mu + pj(st+1, a⇤)(bj � l)

end

return �
P

i milog(pi(st, at))

Table 6: Categorical Algorithm, from [Bellemare et al., 2017]

In the paper they used Vmin = �10, Vmax = 10 and Natoms = 51. The choice
for the number of atoms gave the algorithm its name, C51.
Of all the extensions to DQN mentioned, Distributional DQN gave the strongest
improvements in performance.

5.2.7 NoisyNet

The idea of NoisyNet is simple: Replace the fully connected layers in the
network with noisy linear layers. This leads to the network learning to explore
(and to stop exploring) on its own directly by gradient descent, without the
need for an ✏-greedy policy. [Fortunato et al., 2017]
In Section 4 Deep Learning, Equation 4.2 essentially defined a fully connected
layer. It is modified as follows. The bias term b is exchanged for:

b = µb + �b � ✏b (5.22)
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Likewise, for the weight matrix:

W = µw + �w � ✏w (5.23)

µw 2 Rq⇥p, �w 2 Rq⇥p, µb 2 Rq and �b 2 Rq are learnable parameters.
✏w 2 Rq⇥p and ✏b 2 Rq are random noise variables. To be more specific, the
noise variables ✏w and ✏b introduce factorized Gaussian noise. � represents
the element-wise multiplication operation (Hadamard product). As a result,
we get for the linear layer:

y = (µw + �w � ✏w)x+ µb + �b � ✏b (5.24)

The additional parameters are part of the network and can therefore be
learned during the training process. (Similar to Dueling DQN modifications)

5.2.8 Putting it all together: Rainbow-DQN

All previously mentioned extensions to the original DQN algorithm have in-
dividually improved its performance. Additionally, they address different
issues, but build on the same framework. Therefore, it is natural to ask,
whether they could be combined. This was already the case in some of the
papers discussed. For example, [Wang et al., 2016c] combined Double DQN
with the Dueling architecture and prioritized experience replay and observed
that they were very compatible. In fact, it turned out that all of them inte-
grate well and are “indeed largely complementary.”[Hessel et al., 2017] The
resulting approach was called Rainbow and exceeded not only in performance,
but also in data efficiency.
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5.3 Policy Optimization

Instead of relying on a value function, policy optimization methods aim di-
rectly at learning a parametrized policy ⇡(a | s, ✓) (alternatively written as
⇡✓(a | s) ). [Sutton and Barto, 1998, p.321] [Sutton et al., 1999] This policy
can be both deterministic or stochastic. In the first part of this chapter, we
begin by defining the most important quantities. All of the more advanced
concepts which follow in the next chapters will be based on the ideas we
derive and will require only minor modifications.

5.3.1 Policy gradient

The parameters ✓ which again represent the weights in the network, are
learned by performing gradient ascent on a performance measure, J(✓):

✓t+1 = ✓t + ↵r✓J(✓t) (5.25)

r✓J(✓) is called the policy gradient and ↵ is the learning rate. [Sutton and Barto, 1998,
p.321] The goal is to maximize the expected total (not yet discounted) reward
following the parametrized policy. So, we define:

J(✓) = E
⌧⇠⇡✓(⌧)

[r(⌧)] =

Z
⇡✓(⌧)r(⌧)d⌧ (5.26)

Where r(⌧) is the sum of the rewards received for trajectory ⌧ , i.e. r(⌧) =P
t=1 r(st, at). Here r(st, at) denotes the reward received for performing ac-

tion at at state st. Now taking the gradient of J(✓), we get the policy
gradient:

r✓J(✓) =

Z
r✓⇡✓(⌧)r(⌧)d⌧

=

Z
⇡✓(⌧)r✓ log ⇡✓(⌧)r(⌧)d⌧

= E
⌧⇠⇡✓(⌧)

[r(⌧)r✓ log ⇡✓(⌧)]

(5.27)

In the second line in Equation 5.27 we just applied the log-derivative trick
r✓⇡✓ = ⇡✓

r✓⇡✓
⇡✓

= ⇡✓r✓ log ⇡✓(⌧). Now, since

⇡✓(⌧) = ⇡✓(st, at, ..., sT , aT ) = p(s1)
TY

t=1

⇡✓(at | st)p(st+1 | st, at) (5.28)

When we take the logarithm we have:

log ⇡✓(⌧) = log p(s1) +
TX

t=1

log ⇡✓(at | st) + log p(st+1 | st, at) (5.29)
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So, then, as p(s1) and p(st+1 | at+1) do not depend on ✓ we get for the policy
gradient:

r✓J(✓) = E
⌧⇠⇡✓(⌧)

[r(⌧)r✓ log ⇡✓(⌧)]

= E
⌧⇠⇡✓(⌧)

"
r(⌧)r✓

⇣
log p(s1) +

TX

t=1

log ⇡✓(at | st) + log p(st+1 | st, at)
⌘#

= E
⌧⇠⇡✓(⌧)

"
TX

t=1

r(st, at)r✓ log ⇡✓(at | st)
#

(5.30)

Equation 5.30 is just another way to express the policy gradient. Now, we
can simply collect N trajectories, by letting the agent interact with the en-
vironment. Then we can estimate the above quantity by taking the sample
mean. [Levine, 2018] Therefore, we have:

r✓J(✓) ⇡
1

N

NX

i=1

"
TX

t=1

r(si,t, ai,t)r✓ log ⇡✓(ai,t | si,t)
#

(5.31)

Having derived r✓J(✓), we can now use it to update ✓, as in 5.25. This up-
date rule was used in the original REINFORCE algorithm. [Williams, 1992].
The effect of multiplying by the reward is essentially to make good trajecto-
ries more likely, while making bad trajectories less likely.
However, using the total expected reward to compute the estimate of the
policy gradient is of high variance. [Levine, 2018] Therefore, Equation 5.30
can be modified. First of all, rewards that were received before an action was
taken, should not contribute to how good that action was. [Baxter and Bartlett, 2001]
This intuitively makes sense. We can modify Equation 5.31 as follows:

r✓J(✓) = E
⌧⇠⇡✓(⌧)

"
TX

t=1

TX

t0=t

r(st0 , at0)r✓ log ⇡✓(at | st)
#

(5.32)

Now only the rewards starting at t are summed. The quantity
PT

t0=t r(st0 , at0)
is called reward to go.[Levine, 2018] Note, that the reward to go is the undis-
counted version of Q⇡(st, at), the action-value function in Equation 3.11. But
we will reintroduce the discount factor later in this chapter.
Another way to reduce the variance, is to use a baseline, b, which is subtracted
from the reward. [Williams, 1992] This results in following modification:

r✓J(✓) = E
⌧⇠⇡✓(⌧)

"
TX

t=1

⇣ TX

t0=t

r(st0 , at0)� b
⌘
r✓ log ⇡✓(at | st)

#
(5.33)
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For example, we could use the average reward as baseline. This has the ef-
fect that trajectories which are more rewarding than usual (i.e. that differ
positively from the average reward) become more likely, while less rewarding
trajectories than usual become less likely.
Both those tricks, reward to go and baselines significantly reduce the vari-
ance.

In general, the policy gradient has the form [Schulman et al., 2016]:

r✓J(✓) = E
⌧⇠⇡✓(⌧)

"
TX

t=1

 tr✓ log ⇡✓(at | st)
#

(5.34)

As we have already seen,  t may be represented by one of the following:
PT

t=1 rt•
PT

t0=t rt0•
PT

t0=t rt0 � b•

But  t can also be represented using the state-value function, action-value
function or the advantage function:

Q⇡(st, at)• A⇡(st, at)• rt+V⇡(st+1)�V⇡(st)
( the TD-Error as in
Equation 3.20)

•

This leads us the next chapter.

5.3.2 Actor-Critic Methods

Actor-critic methods learn to approximate both, the policy and value func-
tions. “Actor” refers to the learned policy and “critic” to the learned value
function. The learned value function assigns credit to the policy’s action
selection, i.e. the critic criticises the actor. [Sutton and Barto, 1998] Actor
and critic can both be represented by a neural network. [Mnih et al., 2016]
As mentioned earlier, the reward to go in Equation 5.32 is also given by the
action-value function Q⇡(st, at), hence we can write:

r✓J(✓) = E
⌧⇠⇡✓(⌧)

"
TX

t=1

Q⇡(st, at)r✓ log ⇡✓(at | st)
#

(5.35)

In practice, the true action-value function is not available, but as we have
seen in the last chapter, it can be approximated by a neural network. So we
have Q⇡(st, at;w), with w the parameters in the network. Furthermore, from
Equation 5.33 we also know that we can subtract a baseline. As baseline we
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can use the state-value function V⇡(st). [Sutton and Barto, 1998] This gives
the advantage function (5.14):

A⇡(st, at) = Q⇡(st, at)� V⇡(st) (5.36)

Again we have to approximate the value function which gives V⇡(st; v), with
parameters v. However, now we would need two different networks to approx-
imate action-value function and state-value function individually. But ac-
cording to Equation 3.11, we can express Q⇡(st, at) = E [rt+1 + V⇡(st+1) | st, at].
So, the advantage function can be rewritten in terms of the TD-Error, as used
in Equation 3.20:

A⇡(st, at) = r(st, at) + V⇡(st+1)� V⇡(st) (5.37)

This allows us to only use a single set of weights. In general, choosing the
advantage function gives the almost lowest possible variance and is therefore
a good choice. [Schulman et al., 2016] Using w as the parameters in the net-
work which approximates the state-value function, we get following version
of the policy gradient:

r✓J(✓) = E
⌧⇠⇡✓(⌧)

"
TX

t=1

r(st, at) + V⇡(st+1;w)� V⇡(st;w)r✓ log ⇡✓(at | st)
#

= E
⌧⇠⇡✓(⌧)

"
TX

t=1

A⇡(st, at;w)r✓ log ⇡✓(at | st)
#

(5.38)

This is called the advantage actor critic. Multiplying by the approximated
advantage function has the effect that the probabilities of actions that are
better than average are increased, whereas the probabilities of worse-than-
average actions are decreased. [Schulman et al., 2016]
So far we have omitted the discount factor �. However, to allow for infinite
horizons, we can reintroduce it in Equation 5.37:

A⇡(st, at;w) = r(st, at) + �V⇡;w(st+1)� V⇡(st;w) (5.39)

We can now finally write down the advantage actor-critic algorithm:
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Algorithm 7: Advantage actor-critic algorithm
Input: learning rates ↵✓ > 0 and ↵w > 0, discount factor �, number

of episodes N
Initialise policy parameter ✓
Initialise state-value function parameter w
for i = 1 to N do

Initialise s
I = 1
while s is not terminal do

a ⇠ ⇡✓(a | s)
Take a, observe r(s, a), s0

� = r + �V⇡(s0;w)� V⇡(s;w)
w = w + ↵w�rV⇡(s;w)
✓ = ✓ + ↵✓I�r log ⇡✓(a | s)
I = �I
s = s0

end

end

Table 7: Advantage actor-critic algorithm, from [Sutton and Barto, 1998]

In addition, we can, as in Section 5.2.5, allow for multi-step returns with n
steps. [Mnih et al., 2016] Then we have:

A⇡(st, at;w) =
t+nX

t0=t

�t0�tr(st0 , at0) + �nV⇡;w(st+n)� V⇡(st;w) (5.40)

Those are the fundamentals of actor-critic methods.

5.3.3 A3C, A2C

Policy gradient methods are on-policy methods. However, as we know from
Section 5.2.1, successive observations are highly correlated and cause unsta-
ble learning. Q-Learning methods encountered that issue by maintaining an
experience replay. Another approach to decorrelate the agent’s experience
is to asynchronously execute multiple agents at the same time, on multiple
instances of the same environment, while collecting the gradients. After a
specified number of time steps the global network parameters are then syn-
chronized. This methods was proposed in [Mnih et al., 2016] and is known as
A3C, asynchronous advantage actor critic. A3C outperformed Q-Learning
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methods in several games of the Atari suite, requiring only half the training
time. In addition, A3C not only performed well on Atari games (as previous
methods), but also on continuous motor control tasks provided by the Mu-
JoCo physics engine. [Todorov et al., 2012]
As an alternative to the asynchronous approach A3C, researchers came up
with a synchronous version called A2C, synchronous advantage actor critic,
which outperforms the asynchronous one. [Wang et al., 2016a] [Wu et al., 2017a]
Instead of performing the parameter updates asynchronously, A2C waits for
all individual actors to complete their experience collection and then per-
forms a cumulative update. This is advantageous, because waiting for the
experience collected by all actors results in larger batch sizes and GPUs work
better with those. As a result, A2C performs better, especially in single-GPU
setups. [Wu et al., 2017b] [Dhariwal et al., 2017]
As already mentioned, policy gradient methods, such as A3C or A2C, are in
general on-policy. Nevertheless, there exist off-policy versions of policy gra-
dient methods which do maintain an experience replay. Examples are ACER
or SAC. [Wang et al., 2016b] [Haarnoja et al., 2018] Even combinations of
both, experience replay and distributed experience collection are possible, as
shown by Ape-X and IMPALA.[Horgan et al., 2018] [Espeholt et al., 2018]
The latter algorithm was even used to beat the best players in StarCraft, as
mentioned in the introduction of this thesis. [Vinyals et al., 2019] We cannot
discuss these methods in detail, but look forward to exploring them in the
future.

5.3.4 Trust Region Policy Optimization - TRPO

Another different approach to policy optimization is called Trust Region Pol-
icy Optimization [Schulman et al., 2015]. The idea is to constrain the policy
updates using the KL-Divergence (also used in 5.2.6 ) which measures the
difference between the old and the new policy. This results in a more stable
training process. The optimization problem that has to be solved, is the
following:

maximize
✓

E
s⇠⇢✓old ,a⇠⇡✓old


⇡✓(a | s)
⇡✓old(a | s)A✓old(s, a)

�
(5.41)

Subject to Es⇠⇢✓old
[DKL(⇡✓old(· | s) || ⇡✓(· | s))]  �.

Where ✓old are the policy parameters prior to the update. � is the bound on
the KL-divergence and a hyperparameter. The first line is called the surro-
gate objective and is maximized subject to the second line, the constraint.
The derivation is based on three important concepts: the minorization-
maximization (MM) algorithm [Hunter and Lange, 2000], the trust region
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and importance sampling. Only replacing the expectations by sample aver-
ages and estimating A✓old remains.
To test the performance of TRPO, the authors tested the algorithm on Atari
games and MuJoCo simulations. It turned out, that the algorithm works
especially well on locomotion tasks. Among those tasks were swimming,
walking and hopping. But TRPO also proved to deliver impressing results
playing Atari games. Furthermore, the concepts introduced in TRPO were
highly influential and motivated other algorithms, such as Proximal Policy
Optimization.

5.3.5 Proximal Policy Optimization - PPO

The final algorithm we would like to discuss is called Proximal Policy Op-
timization (PPO). [Schulman et al., 2017] PPO builds on top of the ideas
discussed in TRPO. Whereas TRPO is complicated, PPO is much simpler
to implement, more general and has better sample complexity.
To derive the PPO algorithm, we have to modify the equation used for
TRPO as follows. First we denote the probability ratio rt(✓) = ⇡✓(a|s)

⇡✓old
(a|s) ,

with rt(✓old) =
⇡✓old

(a|s)
⇡✓old

(a|s) = 1. Intuitively, if rt(✓) > 1, then the action is more
likely following the new policy, than before when following the old policy and
vice versa. Then the surrogate objective maximized in Equation 5.41 is given
by:

LCPI(✓) = E
s⇠⇢✓old

h
rt(✓)A⇡✓old

i
(5.42)

Where CPI means Conservative Policy Iteration. [Kakade and Langford, 2002]
Instead of using a hard constraint as in TRPO, the authors propose to modify
the objective as:

LCLIP (✓) = E
s⇠⇢✓old

h
min(rt(✓)A⇡✓old

, clip(rt(✓), 1� ✏, 1 + ✏)A⇡✓old
)
i

(5.43)

Here ✏ is a hyperparameter. Clipping the probability ratio rt(✓) ensures
that the policy does not change too much at once. Additionally, taking the
minimum has the effect, that either rt(✓)A⇡✓old

or (1 � ✏)A⇡✓old
acts as the

lower, pessimistic, bound.
The PPO algorithm is shown in Table 5.3.5.
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Algorithm 8: PPO
Input: clipping parameter ✏, number of iterations Niter, number of

actors Nact

for iteration = 1 to Niter do

for actor = 1 to Nact do

Run policy ⇡old in environment for T steps
Compute advantage estimates A1, ..., AT

end

Optimize surrogate L w.r.t. ✓, with K epochs and minibatch size
M < NT
✓old = ✓

end

Table 8: PPO, from [Schulman et al., 2017]

Proximal Policy Optimization delivered impressive results in various locomo-
tion tasks and outperformed TRPO.
In a later paper, OpenAI used PPO “to learn dexterous in-hand manipulation
policies which can perform vision-based object reorientation on a physical
Shadow Dexterous Hand.” In short, they trained a human-like robotic arm
to manipulate real objects in the physical world. [OpenAI et al., 2018] (A
video is available at: https://www.youtube.com/watch?v=jwSbzNHGflM&

feature=youtu.be)
Furthermore, a scaled-up version of PPO was used to power OpenAI’s Dota
playing AI which outperformed the world’s top human players. [OpenAI, 2018]
Here, PPO proved its scalability. Their system was running on 256 GPUs
and 128.000 CPU cores. OpenAI Five, as they call it, learned entirely by
playing against itself (and previous versions of itself), starting with com-
pletely random parameters. Every day it accumulated 180 years worth of
games. [OpenAI, 2018]
On the one hand these examples show that Deep Reinforcement Learning
methods can be massively scalable and that they are able to learn highly
complex strategies. On the other hand, however, this demonstrates how in-
efficient the current methods are. Imagine how a human being would play if
he/she had the ability to train for 180 years a day.
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6 CONCLUSION

6 Conclusion

In Chapters 3 and 4 the fundamentals of Reinforcement Learning and Deep
Learning were discussed. The topics covered in those chapters are essential
prerequisites for the last chapter, Deep Reinforcement Learning. There some
of the state-of-the-art algorithms were discussed. Of course, Deep Reinforce-
ment Learning is a very comprehensive field and includes various further
domains that were not part of this thesis. I could not discuss these, but
look forward to exploring them in the future. However, I believe, that my
thesis on the one hand explains the core components of Deep RL and on the
other hand also covers the most important innovations of recent years. After
all, I believe it serves as a good starting point to enter the field. During
my personal journey on writing “Learning Deep Reinforcement Learning”, I
certainly did learn how these techniques work. Therefore, I am very grateful
to my supervisor, Vadim Savenkov, who allowed and encouraged me to write
this thesis.
Currently, Deep Reinforcement Learning and the field of Artificial Intelli-
gence in general is ongoing research and moves at a fast pace. At its core,
these methods have been inspired by humans, animals, their behaviour and
most importantly their biological brains. Nowadays, research conducted in
Artificial Intelligence, in turn, also sparks new ideas in other areas, such as
psychology and neuroscience. [Botvinick et al., 2019] [Banino et al., 2018]
Looking into the future, I believe that Artificial Intelligence will enable us to
better understand our own minds. Scientists say that the human brain is the
most complex structure known. Therefore, it is quite natural to believe, that
the mystery of human intelligence might only be solved once we have un-
derstood the artificial one. For this reason, working on artificial intelligence
implies working on understanding the most complex structure we know of. I
think this is a quite motivating thought.
When I first learned about AI about two and a half years ago, I got into the
area of Machine Learning and especially Deep Learning. While writing this
thesis, I extensively studied Reinforcement Learning. Only recently I was
also introduced to more structured approaches, such as knowledge graphs. I
believe that a combination of those three approaches (and possibly others)
will lead to powerful AI applications. After all, human intelligence does not
seem to be based on a single algorithm. In general, however, I think that
Deep Reinforcement Learning provides the right framework (interaction, se-
quential decision making) to most likely combine them all. Overall, Deep
Reinforcement Learning is an exciting approach to Artificial Intelligence and
I look forward to pursuing this path.
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A ALGORITHMS

A Algorithms

Algorithm 9: Policy Iteration
Input: threshold ✓
Output: policy ⇡ ⇡ ⇡⇤
1. Initialize V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 (S)
2. Policy Evaluation
repeat

� 0
for s 2 S do

v  V (s)
V (s) 

P
a ⇡(a | s)

P
s0,r p(s

0, r | s, a) [r + �V (s0)]

� max(�, |v � V (s)|)
end

until � < ✓
3. Policy Improvement
stable true
for s 2 S do

old� action ⇡(s) for a 2 A(s) do

Q(s, a) 
P

s0,r p(s
0, r | s, a) [r + �V (s0)]

end

⇡(s) argmaxa Q(s, a)
if old� action 6= ⇡(s) then

stable false
end

if policystable then return V ⇡ V⇤ and ⇡ ⇡ ⇡⇤
else Go to 2

Table 9: Policy iteration
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Algorithm 10: Value iteration
Input: policy ⇡ , threshold parameter ✓
Output: V ⇡ v⇡
Initialize V (s) arbitrarily, 8s 2 S+, V (s) = 0
repeat

� 0
for s 2 S do

v  V (s)
V (s) maxa

P
s0,r p(s

0, r | s, a) [r + �V (s0)]
� max(�, |v � V (s)|)

end

until � < ✓
return ⇡ ⇡ ⇡⇤, s.t. ⇡(s) = argmaxa

P
s0,r p(s

0, r | s, a) [r + �V (s0)]

Table 10: Value iteration

Algorithm 11: First Visit Monte Carlo Prediction for action values
Input: policy ⇡ , num_of_episodes
Output: Q ⇡ q⇡
Initialize Q(s, a) arbitrarily, 8s 2 S, a 2 A
Initialize Returns(s, a) empty list, for all s 2 S, a 2 A
for i 0 to num_of_episodes do

Generate episode following ⇡:
S0, A0, R1, S1, A1, R2, ..., ST�1, AT�1, RT

G 0
for t 0 to T � 1 do

G �G+Rt+1

if St in S0, S1, ..., St�1andAt in A0, A1, ..., At�1 then

Append G to Returns(St, At)
Q(St, At) average(Returns(St, At))

end

end

return Q

Table 11: First Visit Monte Carlo Prediction for action values
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Algorithm 12: Monte Carlo Control with exploring starts
Input: num_of_episodes
Output: Q ⇡ q⇡
Initialize policy ⇡ 2 A arbitrarily 8s 2 S
Initialize Q(s, a) arbitrarily, 8s 2 S, a 2 A
Initialize Returns(s, a) empty list, for all s 2 S, a 2 A
for i 0 to num_of_episodes do

Choose S0 2 S, A0 2 A(S 0) randomly s.t. all pairs have
probability > 0

Generate episode from S0, A0 following ⇡:
S0, A0, R1, S1, A1, R2, ..., ST�1, AT�1, RT

G 0
for t 0 to T � 1 do

G �G+Rt+1

if St in S0, S1, ..., St�1andAt in A0, A1, ..., At�1 then

Append G to Returns(St, At)
Q(St, At) average(Returns(St, At))
⇡(St) argmaxa Q(St, a)

end

end

return ⇡

Table 12: Monte Carlo Control with exploring starts
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A ALGORITHMS

Algorithm 14: Q-Learning
Input: step-size ↵ 2 (0, 1], num_of_episodes
Output: Q ⇡ q⇡
Initialize Q(s, a) arbitrarily, 8s 2 S+, a 2 A(s)
for i 0 to num_of_episodes do

Initialize S
foreach step in episode do

Choose A at S using Q
Take action A, observe R and S 0

Choose A0 at S 0 using Q
Q(S,A) Q(S,A) + ↵ [Rt+1 + �maxa Q(S 0, a)�Q(S,A)]
S  S 0

A A0

end

end

return Q

Table 14: Q-Learning

Algorithm 13: Sarsa
Input: step-size ↵ 2 (0, 1], num_of_episodes
Output: Q ⇡ Q⇡

Initialize Q(s, a) arbitrarily, 8s 2 S+, a 2 A(s)
for i 0 to num_of_episodes do

Initialize S
Choose A at S using Q
foreach step in episode do

Take action A, observe R and S 0

Choose A0 at S 0 using Q
Q(S,A) Q(S,A) + ↵ [Rt+1 + �Q(S 0, A0)�Q(S,A)]
S  S 0

A A0

end

end

return Q

Table 13: Sarsa
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