
Bachelor Thesis

Open Dataset Archive

Scalable dataset crawling with efficient archiving and the investigation
of changes between versions.1

Thomas Weber

Date of Birth: 05.03.1996

Student ID: 01553755

Subject Area: Information Business

Studienkennzahl: 033 561

Supervisor: Dr. Neumaier Sebastian

Co-Supervisor: Univ.Prof. Dr. Polleres Axel

Date of Submission: September, 20th 2020

Department of Information Systems and Operations, Vienna University of
Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

1The results of this bachelor thesis have been published as a resource track paper[1] in
ISWC2020.

Contents
1 Introduction 1

1.1 Problem Overview . 3
1.1.1 Data Type Detection 3
1.1.2 Detection of Changes 4
1.1.3 The Storage-Recreation Trade-off 4
1.1.4 Workload-management and Scalability 4

1.2 Research Question . 4
1.3 Thesis Structure . 5

2 Preliminaries & Background Literature 5
2.1 Data Types . 5

2.1.1 Unstructured Data . 6
2.1.2 Semi-structured Data 6
2.1.3 Structured Data . 6

2.2 Architectural Hurdles . 6
2.2.1 Host Politeness . 6
2.2.2 Dynamic Crawl-Rate 7
2.2.3 Scalability . 7

2.3 Related works on data archiving and versioning 8
2.3.1 Online Platforms . 8
2.3.2 Git and SVN . 9

2.4 Preliminaries and Technologies used in this thesis 10
2.4.1 Databases . 10
2.4.2 Programming Languages and Concurrency 11
2.4.3 Kubernetes, NGINX Ingress and Reverse Proxy 12

3 Requirements and Services 12
3.1 Primary Requirements . 13

3.1.1 Application Programming Interface 14
3.2 Secondary Requirements . 14

4 Implementation 15
4.1 Architecture . 16

4.1.1 System Structure . 17
4.1.2 Sequence Diagram . 18
4.1.3 Database Model . 19

4.2 Data Access & Client Interface 20
4.2.1 Public API . 20
4.2.2 Private API . 21

4.2.3 SPARQL Endpoint . 21
4.3 Traffic and Workload-management 23

4.3.1 Parallelization and Scalability 23
4.3.2 Dynamic crawl frequency 24

4.4 Data Management . 25
4.4.1 Type Detection and Data analysis 25
4.4.2 Compression . 26
4.4.3 Resource Handling . 26

4.5 Dependencies and Open Issues 27

5 Findings 28
5.1 Corpus of the archivers database 28
5.2 Monitoring and Bench-marking 29

6 Conclusion and Further Research 31

7 Acknowledgements 33

List of Figures
1 Architecture . 17
2 Sequence Diagram . 18
3 Database Model . 19
4 Example INSERT statement to add the dataset meta-information. 21
5 INSERT statement of example CSV meta-information. 22
6 Example query to get a set of URLs of archived datasets. . . . 23

List of Tables
1 Collections . 28
2 Datasetcount per Host . 28
3 File Size Distribution . 29
4 Status . 29
5 Storage . 30
6 File Type Distribution . 30
7 Time Stats . 30
8 Network Traffic . 31

Listings
1 MongoDB querying example 10
2 Main crawling functions . 16
3 Function to calculate next crawling attempt 24
4 Datasetsource comparison with Python 26

Abstract

In this paper we present the Open Dataset Archive (ODArchive),

a dataset crawling and archiving infrastructure which regularly crawls

and indexes Open Data (OD) resources. It performs basic data cleans-

ing on known formats, and provides unified access to a large corpus

of structured data from OD portals through APIs that allow flexible

filtering, e.g. through SPARQL queries over the meta-data, for on-

the-fly generation of specific sub-corpora for repeatable experiments.

The ODArchive enables us to investigate the changes and develop-

ment of web resources over time and gather statistics, metrics and

insights of open datasets available on the Internet. Our work de-

scribes the requirements and the technologies used to implement the

ODArchive.

It is available at: https://archiver.ai.wu.ac.at/.

https://archiver.ai.wu.ac.at/

1 Introduction
The initial vision of the World Wide Web in 1989 by Tim Berners-Lee was a
system of interlinked documents, to solve the problem of locating information
on distant machines. To do so, he developed the Hypertext Markup Language
(HTML) which describes the structure of a document and allows to add
hyperlinks to other documents. Over the years the Web became the main tool
to share and spread information and has seen an enormous growth. However,
the Web also became broader in terms of available content: while the main
part of the Web consists of HTML documents, readable by humans, we can
also see a trend towards publishing datasets openly available on the Web and
towards a "Web of Data"2. More and more datasets get published on the
Web, for instance as "Open Data" – freely available to everyone to use and
re-publish without restrictions – which is typically available on governmental
data portals, or via community portals, such as the data science platform
"Kaggle" where community members can share datasets with each other.

As the Web became the main tool for publishing and sharing information
worldwide, there also emerged projects for storing and archiving all this pub-
lished information; most important the Internet Archive3 and the European
Web Archive: while the latter is an archive only for the EU institutions,
agencies and bodies, the former is an approach to crawl and archive all con-
tent on the web (see Section 2.3 for more details). The motivation behind
these archiving approaches is to provide a digital library of all documents
available online, as for instance the state archive or public libraries of coun-
tries would do for all print/physical media. These digital archiving solutions
however, only access websites, i.e. the HTML resources and do not archive
other resources, such as CSV tables, XML, JSON, or RDF files, or even PDF
documents. The growing amount of such data freely accessible on the web
and the fact that this data is changing over time aroused our interest in the
metrics of web resource changes and large scale archiving of Open Data.

The Open Data (OD) movement, mainly driven by public administrations
in the form of Open Government Data has over the last years created a rich
source of structured data published on the Web, in various formats, covering
different domains and typically available under liberal licences. Such OD is
typically being published in a decentralized fashion, directly by (governmen-
tal) publishing organizations, with data portals, often operated on a national
level as central entry points. While these portals provide somewhat stan-
dardized metadata descriptions and (typically rudimentary, i.e. restricted to

2 https://www.w3.org/2013/data/
3 https://archive.org/

1

https://www.w3.org/2013/data/
https://archive.org/

metadata only) search functionality, the data resources themselves are avail-
able for download on separate locations, as files on specific external download
URLs or through web-APIs, again accessible trough a separate URL.

Despite there is initial work on harvesting, integrating and monitoring
meta-data from over 260 OD portals for several years now in the Portal Watch
project [2], we want to provide unified access to this rich data source. Un-
derlining the increasing importance of providing unified access to structured
data on the Web, Google recently started a dataset search [3] facility, which
likewise indexes and unifies portal meta-data adhering to the Schema.org [4]
vocabulary in order to make such meta-data searchable at Web scale. This
OD meta-data is well investigated in terms of searchability [3] or quality, [2]
but the underlying referenced datasets, i.e. the actual resources themselves,
and their characteristics are still not well understood:

• What kinds of data are published as OD?
• How do the datasets themselves develop over time?
• How do the characteristics of datasets vary between portals?
In order to enable answering such questions, our goal in the present thesis

is to provide a resource in terms of a dynamically updated corpus of datasets
from OD portals, with unified access and filtering capabilities, that shall allow
both profiling and scientific analyses of these datasets. To this end we have
created, on top of the Portal Watch framework, a dataset crawler and archiver
which regularly crawls and indexes OD resources, and provides unified access
to a large corpus of archived data through APIs that allow flexible filtering,
e.g. through SPARQL queries over the meta-data, for on-the-fly generation
of specific sub-corpora for experiments. We deem this project particularly
useful as a resource for experiments on real-world structured data: to name
an example, while large corpora of tabular data from Web tables have been
made available via CommonCrawl [5], the same is not true for tabular data
from OD Portals.

We fill this gap by presenting the ODArchive, an infrastructure to crawl,
index, and serve a large corpus of regularly crawled structured data from (at
the moment) 137 active portals. We describe the challenges that needed to be
overcome to build such an infrastructure, including for instance automated
change frequency detection in datasets, and make the resource available via
various APIs. Specifically, we make the following concrete contributions:

• We present a detailed architecture of a distributed and scalable Dataset
Archiver. The archiver is deployed at https://archiver.ai.wu.a

c.at, and the software is openly available on GitHub4 under the MIT
license.

4 https://github.com/websi96/datasetarchiver

2

https://archiver.ai.wu.ac.at
https://archiver.ai.wu.ac.at
https://github.com/websi96/datasetarchiver

• Using the introduced archiver, we regularly collect and archive – based
on an approximation of the change rates – a large corpus of datasets
from OD sources, and make the whole corpus, including the archived
versions available via different APIs, incl. download access to subsets
of the corpus configurable via SPARQL queries.

Our main goal is to archive any kind of data and to investigate the changes
and the overall development of single resources over time. We also designed
the OD Archive to be easily scalable and distributable over different clus-
ters to handle the growing amount of data. In our work we also describe
the implementation of the crawler and the challenges like file compression,
change analysis, crawling frequencies or scalability while crawling different
data types of different sizes from different resources.

1.1 Problem Overview
Despite there are solutions for versioning and storing data (Git, Apache
Subversion), handling large file sizes and the vast amount of data on the web
cannot be covered by traditional solutions. To implement such a crawler
and to archive different versions of large files, we had to cover the problems
of data type detection, change detection, workload-management, scalability
and the storage-recreation trade-off further explained in this section.

In order to overcome all this problems, we present our solutions and
implementation in Section 4. In Section 4.3 we provide our solutions for
workload-management and scalability. Section 4.4 gives an insight of how we
handle the crawled data.

1.1.1 Data Type Detection

Because some providers do not attach any information about the type of the
sent file in the HTTP headers, the detection of the correct file type is hard
to implement. It might also be the case, that the received file is compressed,
which enforces our crawler to decompress the file for further analysis of the
filetype. It is also not guaranteed that file endings lead to correct file types,
as well as there might not even be file endings or names.

The data could also be unstructured, in which case the analysis of the
data would require extensive parsing approaches to get to know the crawled
data. To better understand structured and unstructured data, we will give
a short overview about different data types in Section 2.1.

3

1.1.2 Detection of Changes

Defining an efficient way to recognize changes is a key problem while mini-
mizing processing power on handling this great amount of large files, because
first and foremost the change frequency of an unknown resource must be cal-
culated. In a second step a program must be able to recognize a change of a
file and at last it must identify the changes themselves in detail.

The definition of the change frequency can either be fixed or dynamic,
but there is no algorithm, which defines an accurate way of identifying the
change-rate of resources on the web.[6]

1.1.3 The Storage-Recreation Trade-off

Another problem is the trade-off between the "Total Storage Cost" and the
"Recreation Cost". Minimizing both is preferred, but either we use more
storage and are able to recreate different versions of the data in a fast way or
we use less storage and therefore it is slower to retrieve the data again. As
Amol Deshpande [7] states, most of the variants of the problem of balancing
these two costs are NP-Hard. This means that these problems may possibly
not be verifiable in polynomial time and efficient heuristics are needed for
approximation solutions to this problem.[8]

Also an appropriate compression or de-duplication method needs to be
found in order to minimize the needed storage. Although this would minimize
the storage cost, we do not focus on compression methods and de-duplication
algorithms in our work. See how we handle our data in Section 4.4.

1.1.4 Workload-management and Scalability

The vast amount of data and their enormous file size challenge traditional
software archetypes and the power and storage capabilities of single servers.
Also the computational effort to calculate statistical output is a huge point of
failure. Therefore the calculation of the correct crawling attempt frequency
is needed to balance the workload.[6]

1.2 Research Question
Because of the various problems stated above the following research question
is guiding our research:

• How can a system archive and version structured and unstructured
data in a scalable and efficient way?

4

– To address this question we consider current archiving and ver-
sioning methods and how these systems detect the changes of files.

– We also analyze how a system can efficiently store and retrieve
different versions of large data and how to manage the workload
while crawling huge amounts of large files.

– Further we attempt to find metrics which can be gathered while
downloading and archiving different file types.

– To make the archived datasets searchable and accessable we pro-
vide meta-information regarding the specifics of the archived ver-
sions. Using this auto-generated metadata the archive can directly
be queried, accessed.

1.3 Thesis Structure
The remainder of this thesis is structured as follows: The analysis of back-
ground literature and state of the art solutions is presented in Section 2, the
definitions of requirements and services in Section 3 and a detailed implemen-
tation documentation in Section 4. We present our findings while crawling
about 1.2 Million datasets in Section 5 and a conclusion of our archiving ser-
vice, which aims to tackle this question and provides an efficient and scalable
way of crawling large amounts of data in Section 6.

The developed ODArchive can be accessed at
https://archiver.ai.wu.ac.at/.

2 Preliminaries & Background Literature
This section gives an overview of the literature we reviewed and describes
the state of the art concepts and solutions which need to be understood to
follow along the implementation of the system.

2.1 Data Types
Investigating the Internet Archive5 a bit further, they state to archive web
pages, books, texts, audio and video files, images and software programs. In
our case however we want to focus on textual and binary open datasets like
CSV, JSON, XML, RDF or ZIP. According to Sint et al. [9] all data types
can be split up into following three categories:

5 https://archive.org/about/

5

https://archiver.ai.wu.ac.at/
https://archive.org/about/

2.1.1 Unstructured Data

Unstructured data does not have any kind of data schema and therefore has
no identifiable structure. It is often referred as binary data. Examples for
unstructured data are PDFs, images, videos and zip archives. Also web page
content is a kind of unstructured data, of which the "waybackmachine" from
the Internet Archive already provides versions based on snapshots.

2.1.2 Semi-structured Data

Semi-structured data on the other hand can be seen as some kind of tree-like
data or as an unstructured table. Tree-like data can have the XML or JSON
format and tabular data is mostly stored as Comma Separated Values (CSV).

All this semi-structured file types are basically just ordinary text files
representing the data in a predefined way and currently there is no service
providing access to versions of such file types. This leads to the fact, that
semi-structured data is our main focus while crawling different resources.

2.1.3 Structured Data

Structured data has a predefined schema, which is mostly defined in a rela-
tional way or as graph data. Relational data can mostly be found in relational
database systems and is often used in combination with object oriented pro-
gramming.[9] Graph data can be represented with the Resource Description
Framework (RDF) and is mostly referred to as linked data.

2.2 Architectural Hurdles
While investigating the topic of large scale data crawling, we came across
difficulties we had to consider. Not only we must ensure politeness to several
hosts, we also have to implement a metric to determine the change-rate of
resources on the web. To be further able to enlarge our corpus we also have
to take the scalability of our architecture into account.

2.2.1 Host Politeness

Unlike a normal user, our web crawler will access a web-host multiple times
in parallel. This may lead to a denial of service, if it cannot handle enough
requests at the same time. To not getting blocked by various hosts, the
crawler must enforce politeness rules for each of the indexed datasets.

As Riemer [10] states, there are several ways not to overstrain a host
while crawling, which they implemented in their approach. The best way is

6

to investigate and enforce the Robots Exclusion Protocol (robots.txt) rules,
which define restrictions for web crawlers and the definition of individual
crawling delays, to ensure politeness for each host.

Besides there are rules for crawlers, which are blocking them to access
some specific sites. Google recently announced that the Noindex, Nofollow
and Crawl-delay rules of the robots.txt are deprecated and therefor not used
anymore by the Googlebot.[11]

2.2.2 Dynamic Crawl-Rate

To investigate changes over time, the data we want to analyze has to be
crawled in a predefined interval. To determine this interval, Neumaier and
Umbrich [12] propose three strategies.

Either the changes are propagated by the data provider in a push based
way (push-based change history), an information about the latest change
time of a resource is available from the data source (age sampling), or the
newly downloaded data is compared with the older version of the same data
(comparison sampling).[12]

In our case only the comparison sampling makes sense, because not many
people will propagate their data changes to the crawler, nor do some of them
have the possibility to do this in an automated way. Also the latest change
information in the HTTP Header lacks a broader acceptance on the web.

The frequency of crawling attempts influences the needed resources and
bandwidth of the crawler. Distributing this frequency over the number of
hosts a crawler has to crawl is therefore mandatory for the scalability of such
a system.

2.2.3 Scalability

Speaking of scalability, one must know that a system is limited by resources
in terms of hardware. Traditional software is executed on just a single server
or computer and is therefore limited by the hardware of this single unit and
cannot be easily extended.

For our crawler to be able to expand the number of datasets it is ca-
pable to crawl simultaneously and store on disk, the software architecture
must provide a way to add hardware and increase the speed and capacity of
the system preferable in a linear way. In the best case the resources scale
themselves depending on the workload the crawler has to handle.

In Section 4.3.1 we state how we utilize kubernetes, containerization and
mongodb to dynamically scale our infrastructure.

7

2.3 Related works on data archiving and versioning
As mentioned in the introduction, there already exist technologies, which
crawl the web at large scale or provide solutions for versioning specific types of
data. This section tries to give an overview of existing platforms, frameworks
and technologies to crawl and interact with large data corpora.

2.3.1 Online Platforms

While searching for existing platforms, which have the same characteristics
as our proposed archiving and versioning tool, we came across following four
services:

Archive.org - WayBackMachine The Internet Archive is a non-profit
organization to build a digital library of Internet sites. They state, that their
mission is to provide universal access to all knowledge and began to archive
the Internet in 1996. Therefore their Archive-It program identifies important
web pages and stores them in a Wayback Machine.6 Today their archive not
only contains websites, but also books, texts, media content and software. It
is one of the top 300 web sites in the world and their library occupies 45+
Petabytes of server space for a single copy of the data shown below:

• 330 billion web pages
• 20 million books and texts
• 4.5 million audio recordings
• 4 million videos
• 3 million images
• 200,000 software programs

In contrast to our OD approach, the Internet Archive pays special attention
to books, web and television content. In 2009 they began to make selected
U.S. television news broadcasts searchable by captions. This service allows
researchers and the public to use television as a citable and sharable refer-
ence.[13]

Common Crawl The Common Crawl Foundation is a also a non-profit
organization which tries to democratize the access to information on the
web. Their vision is to make the internet a truly open web that is universally
accessible, analyzable and allows open access to information for everyone.
Common Crawl makes wholesale extraction, transformation and analysis of
web data cheap and easy and their corpus contains petabytes of raw web
page data, metadata extracts and text extracts. Although access to data

6 https://archive.org/web/

8

https://archive.org/web/

they host on Amazon AWS is free, Amazons cloud platform can charge you
while running analysis jobs directly against their data.[14]

Based on the Common Crawl, Lehmberg et al. [5] presented a large corpus
of (typically much smaller) Web tables, consisting of 233 million content
tables. They classified these tables as either relational, entity, or matrix
tables depending on the orientation and structure of a table, detecting sub-
header rows/multi-tables and subject columns in a dataset. In future work,
we want to apply this classification to our corpus – particularly to the tabular
resources – in order to highlight and compare the differences of a corpus of
Web/HTML and OD CSV tables. A survey on profiling relational data can
be found in [15].

Kaggle Kaggle is a subsidiary of Google and also one of the biggest data-
science plattforms on the Internet. Not only they provide collections of
uploaded datasets, but also allow users to have fully functional web-based
Jupyter7 compute environments to play with selected datasets.

It is a perfect playground for machine learning enthusiasts and data sci-
entists who simply want to share their work. Kaggle is also known for its
Machine learning competitions and educational programs.[16]

DBpedia - WayBackMachine To archive data of Wikipedia Fernández,
Schneider, and Umbrich [17] created the DBpedia WayBackMachine which
provides the wayback functionality for just DBpedia at any selected time
based on the revisions of their Wikipedia article.

2.3.2 Git and SVN

Although there exist several versioning software like Git and SVN, all of
them fail on versioning large files, as described by Amol Deshpande [7] and
Bhattacherjee et al. [18], because they only use fairly simple algorithms to
compute deltas for compression. Therefore they are mostly used as versioning
tools for large code bases of small textual files, but are unhandy in handling
binary data.

Furthermore Git-LFS, the large file storage extension of Git is only ca-
pable of handling files with a maximum file size of 2 GB. Git-LFS stores the
whole files externally multiple times and does not do delta-compression on
this kind of files, which means it is not suitable to efficiently archive large
content.[19]

7 https://jupyter.org/

9

https://jupyter.org/

2.4 Preliminaries and Technologies used in this thesis
2.4.1 Databases

To efficiently store data, database management systems are used to handle its
storage and retrieval. Commonly speaking there are two types of such. On
the one hand there are relational database management systems (RDBMS)
and on the other hand there exist document stores. Document stores are
often referred to as NoSQL databases.

We discuss the main differences of these two approaches using the database
systems PostgreSQL (RDBMS) and MongoDB (NoSQL).

Relational PostgreSQL is an open source feature rich object-relational
database system. It can be queried with the Structured Query Language
(SQL) and has powerful add-ons like the PostGIS geospatial database exten-
der.

Although Bhardwaj et al. [20] state that Oracle flashback and PostgreSQL
are capable of doing a traversal search of versions going back and forth in
time, it is hard to efficiently store large amounts of data. Despite PostgreSQL
is able to store large files as "pg_largeobject", it does not provide a way to
efficiently version them with its built in TimeTravel functionality, because
they split up the metadata and the data in two separate tables.[21]

(In the newest versions of PostgreSQL the TimeTravel functionality is
not existent anymore.)

NoSQL MongoDB on the other hand is a document database with high
flexibility in data schemes and scalability. It stores data in flexible, JSON-
like documents and can be queried with an intuitive query language. The
querying is more or less the same for the shell and JavaScript.

1 db.users.insert ({
2 "_id" : ObjectId("5db8db42f5323152269c1d87"),
3 "name" : "Tom",
4 "dob" : ISODate("1996 -03 -05 T10 :07:22.010Z"),
5 })
6

7 // returns the dob of all documents with name "Tom"
8 let docs = db.users.find({"name": "Tom"}, {"dob": 1})

Listing 1: MongoDB querying example

But also following a document versioning pattern with a NoSQL database
like MongoDB has its limits. A blog entry on MongoDBs website states that
following three factors must be considered before using a NoSQL database:

10

• The documents do not have too many versions.

• There are not too many documents to version.

• Queries are mostly performed on the latest version.

This indicates that also MongoDB is not the best choice for the needs of
archiving data which changes in a frequent way, but might be useful to archive
the data our crawler should handle.[22] Section 3.1 gives an overview about
the data being crawled.

MongoDB also provides a convention for storing large files in a MongoDB
database. This convention is called GridFS and stores the files in a chunked
way with a fixed chunk size, which we might further use to de-duplicate the
data.

2.4.2 Programming Languages and Concurrency

The underlying programming language we are using in our case is JavaScript,
because of its non-blocking, event-driven nature. Compared to the traditional
blocking programming styles of sequential programming used in Python or
Java, JavaScript is more suitable for concurrent web traffic.

A program is non-blocking, when it does not have to wait for functions to
have finished their execution. Code can therefore be called asynchronously
after a function has been invoked.[23]

Node.js As asynchronous event-driven JavaScript runtime built on Chrome’s
V8 JavaScript engine, Node.js is perfectly suitable to develop scalable net-
work applications.[24]

To access different open source dependencies, NPM provides packaged
modules of code for Node.js. Furthermore TypeScript can be used to ensure
type safety. TypeScript is a superset of JavaScript and uses a compiler to
compile the source code to plain JavaScript. TypeScript makes intense use
of types and definitions, which help making less mistakes while coding by
providing instant errors from the compiler.8

I/O - Handling and Threading In our case the non-blocking program-
ming style of JavaScript dramatically improves the time to download the
data compared to blocking code like Python. When using non-blocking code,
database access for example gets much faster, because each download invokes
a database request and the further code can be executed in parallel to this

8 https://www.typescriptlang.org/

11

https://www.typescriptlang.org/

requests. Here is a little example from the Node.js website to explain this a
bit further:

"As an example, let’s consider a case where each request to a web
server takes 50ms to complete and 45ms of that 50ms is database
I/O that can be done asynchronously. Choosing non-blocking
asynchronous operations frees up that 45ms per request to han-
dle other requests. This is a significant difference in capacity
just by choosing to use non-blocking methods instead of blocking
methods."[23]

Threading or multithreading on the other hand is a way to parallelize pro-
cesses on the operating system level and not on the runtime side as in Node.js.
A Python program can be parallelized with multithreading. Threading is
more or less limited by the CPU cores of the underlying operating system,
because it utilizes processing power from each core.

Although Python is fast when multithreading is used, a Node.js program
can nowadays also be spanned across multiple processor cores and is therefor
easily scalable.[23]

2.4.3 Kubernetes, NGINX Ingress and Reverse Proxy

Kubernetes It is often referred to as ‘k8s’ and provides an open-source
system to automatically deploy, scale, and manage containerized applica-
tions. It can manage multiple clusters and interlink them over the network
interface.

NGINX Ingress It is a HTTP load balancer for applications, represented
by one or more services on different nodes. The routing is controlled by rules
defined on each Ingress resource.[25]

NGINX Reverse Proxy It is responsible for load-balancing HTTP re-
quests and database connections from external IPs to the internal exposed
Ingress services. The reverse proxy is therefore the main entrypoint for ex-
ternal connections and as such not only provides load balancing, but also
functions as another layer of security.

3 Requirements and Services
Every good system starts with a plan. Therefore we decided to take a two
step approach to accomplish our goals. At first we defined the primary

12

requirements and additionally we came up with secondary ones, to enhance
the crawler even further.

3.1 Primary Requirements
Based on the previous examination of state of the art solutions and related
work we defined requirements for our scope of data and sources, the scala-
bility, the politeness to our hosts and our must have api endpoints.

Scope According to the study of Mitloehner et al. [26] 10 percent of CSV
files from 232 OD portals have been labelled as CSV files and only 50 percent
of them could have been parsed. Furthermore the HTTP response header of
only 50 percent of all CSV files has been specified correctly, which indicates
that its hard to identify the data type before downloading the whole file.

By just crawling CSV files we might lose data which could eventually be
used, if it is cleaned and further analyzed by another system. Therefore we
decided that the crawler must be able to handle different types of data. Any
given data type must be supported. Just for example, the crawler must be
able to handle PDF, JPEG, XLSX, ZIP and any textual-file like CSV, JSON,
XML or RDF, to list just some of them.

In Section 5 we present the distribution of all the different filetypes our
crawler downloaded by the time of writing this work.

Source To feed our crawler with resources, we rely on the work of Neu-
maier, Umbrich, and Polleres [2] and their OD Portal Watch. This collection
of portals and their datasets provides us with a large corpus of urls to index
in our crawler.

The crawler must therefore be able to regularly index urls from their
sparql endpoint on https://data.wu.ac.at/portalwatch/sparql.

Scalabilty In order to create a system that scales to the huge amount of
datasets and their size we have to divide our system into different logical
subsystems. Umbrich, Mrzelj, and Polleres [6] propose to design such an
infrastructure as some kind of P2P network. They also state, that it must
be able to crawl all the resources in a parallel, dynamic and polite manner.
It also must easily be extendable in terms of needed resources to increase for
example its storage capacity.

Host Politeness In terms of concurrent request per host, our crawler must
be polite to the hosts of the resources. To ensure our crawler does not get

13

https://data.wu.ac.at/portalwatch/sparql

blocked by certain hosts, a minimum of politeness is required to fetch all
resources from the web. Therefore we decided that our crawler must only
crawl one file from a host at a time, but must parallelize different hosts, until
we can enforce enhanced politeness rules. (see Section 3.2)

Profiling To ensure quick access for basic statistics about the data corpus,
a mechanism like pre-calculation or indexing of data profiles is needed. The
user must be able to quickly find information about different profiles. We
therefore try to implement some profiles defined by Mitloehner et al. [26] and
Neumaier, Umbrich, and Polleres [2] e.g.:

• different types of data

• file size

• size distribution

• number of versions

• number of changes

• versatility of data

We also want to investigate tabular data and try to guess their column types.
This will come in handy, when trying to find inter-referencing tables in our
corpus. Read more about data analysis in Section 4.4.1.

3.1.1 Application Programming Interface

Another primary requirement is a Representational State Transfer Applica-
tion Programming Interface (RESTful API). It is used to further develop
applications on top of the underlying crawler architecture without the need
to know the crawling software itself in detail.

To ensure compatability with other programs, our crawler needs a post
endpoint to add resources, some get methods to retrieve files, a crawl end-
point to tell which resources must be crawled and some stats endpoints to
have some basic knowledge about the data corpus.

The actual implementation reference of the API can be found in Sec-
tion 4.2.

3.2 Secondary Requirements
In a second step we defined further requirements to have guidelines to keep
the direction of our work in alignment with the goals we want to achieve with
this project.

14

Arbitrary URLs Our crawler must be able to parse URLs from just any
website and must be able to guide its way through the entangled connections
of the interconnected web of data.

Data Quality Metrics The crawler must in a second step be able to
combine his data resources with the data quality metrics from the work of
Neumaier, Umbrich, and Polleres [2] about the "Automated Quality Assess-
ment of Metadata across OD Portals".

Enhanced Host Politeness Enhanced politeness means that the crawler
not only is able to parse the robots.txt, but further includes metrics to enrich
the politeness and also the efficiency of the crawling process itself. This could
be achieved by analyzing the content of each host and providing different
heuristics taking the crawled content into account.

Web Interface Another feature of an upcoming version must be a web
interface to provide an easy way for users to add and retrieve data to and
from the crawler.
The previous mentioned API is a preparational step to accomplish this re-
quirement.

4 Implementation
Based on the recommendations from Umbrich, Mrzelj, and Polleres [6] about
capturing and preserving changes on the Web of Data, we decided to divide
our infrastructure into three different layers:

1. Network : Kubernetes orchestrates our containerized software and NG-
INX balances the load on the cluster.

2. Storage: MongoDB stores all datasets as chunked binaries along with
their associated metadata.

3. Scheduling : Our Client-Server architecture written in Node.js handles
the crawling and scheduling components.

The client and the server are Node.js Express Applications which consist of
an API and websocket capabilities. The clients connect to the scheduling
master server component via a socket routed through NGINX Ingress.

Every crawling interval the scheduler asks the clients via a broadcast how
many datasets they are able to crawl at the moment and responds with the
requested amount of dataset ids each client is capable to handle. The client
then downloads/crawls the requested resources from the web and store them
in our sharded MongoDB.

15

Our software architecture follows the Model-View-Controller (MVC) pat-
tern. We also implemented the controller functions as services to exclude the
business logic, in our case the crawling logic, from the controlling logic. This
makes testing our software easier.[27]

When a Client is requested to crawl a dataset, the functions in listing 2
are getting invoked. After the download of the file we compare the hashes of
the old and the new version. We further calculate the next crawl and then
release the dataset and host again. If an error occurs in this procedure, we
add this error to the dataset metadata and calculate the next crawl as if the
dataset has not changed. Then we again release the dataset and host.

1 class Crawler () {
2 dataset = db.dataset.getCrawlable ()
3 async start() {
4 try {
5 await this.download ()
6 this.dataset.crawl_info.currentlyCrawled = false
7 const hasChanged = await this.checkHash ()
8 this.calcNextCrawl(hasChanged)
9 await this.dataset.save()

10 await db.host.release(this.dataset.url.hostname)
11 if (hasChanged) this.populate_sparql_endpoint ()
12 return true
13 } catch (error) {
14 this.dataset.crawl_info.currentlyCrawled = false
15 this.addError(error)
16 this.calcNextCrawl(false)
17 await this.dataset.save()
18 await db.host.release(this.dataset.url.hostname)
19 return false
20 }
21 }
22 }

Listing 2: Main crawling functions

4.1 Architecture
The whole system runs on a cluster consisting of three nodes managed by
Kubernetes. An Ingress service of NGINX handles the load balancing inside
the cluster and an external NGINX reverse proxy in front of the cluster is
responsible for the connections from outside the cluster.

16

In order to scale the system, it is possible to plug in other clusters or add
nodes to the cluster. This means we can dynamically add more resources
and spread our workload. Our websocket software architecture further also
allows users to act as crawling clients.

To further understand each of the components we provide architectural
diagrams listed below.

4.1.1 System Structure

Figure 1 presents how a user can interact with the system and how the
different parts are connected with each other.

Figure 1: Architecture

The MongoDB can directly be accessed by the scheduler software and the
crawling clients. This crawling instances can be distributed over different
clusters and work therefore in a parallelized way. The scheduling component
can fetch datasets and hosts from the database which are ready to be crawled.
It is further connected to the Ingress to orchestrate the clients.

If a user accesses the ODArchive, the NGINX Load Balancer distributes
the requests in a Round-Robin fashioned way, which means the clients are
ordered and the requests are cycled each after another. So if there are 3
clients (c) and 5 requests (r), the requests will be handled by the clients in
following order:

17

r1) c1; r2) c2; r3) c3; r4) c1; r5) c2

The user is therefore also able to interact with the crawling clients via the
NGINX Reverse Proxy and can access the API with http-requests or connect
to the master via a socket.

4.1.2 Sequence Diagram

Figure 2 depicts the sequential interaction flow of each scheduling cycle be-
tween the three components Scheduler (S), Client (C) and MongoDB (DB).
(The) symbol declares the direction of communication.)

Figure 2: Sequence Diagram

1. [S)DB]: Database query to get all hosts which are free to crawl.
2. [DB) S]: Database returns all hosts which are free to crawl.
3. [S)DB]: Database query to get all datasets which are free to crawl.
4. [DB) S]: Database returns all datasets which are free to crawl.
5. [S) C]: Asynchronous call to a client to crawl a dataset.
6. [C)DB]: The client tries to lock the host, to ensure no other client can crawl the

18

same host simultaneously.
7. [DB) C]: Returns either true or false, depending on the hosts locking state.
8. [C)DB]: The client tries to lock the dataset, to ensure no other client can crawl
the same dataset simultaneously.
9. [DB) C]: Returns either true or false, depending on the datasets locking state.
10. [C) C]: The client starts an asynchronous crawl of the requested dataset, if the
locking was successful.
10a.[C)DB]: After crawling, the client saves and releases the currently crawled dataset.
10b.[DB) C]: Returns either true or false, depending on the datasets locking state.
10c.[C)DB]: The client also releases the host to be able to get crawled again.
10d.[DB) C]: Returns either true or false, depending on the datasets locking state.
11. [C) S]: The client either returns true or false, depending on the state of the
asynchronous crawl.
12. [S) S]: The Scheduler then recursively starts the next cycle.

4.1.3 Database Model

The Database Model in figure 3 provides a detailed overview of the attributes
each collection in the database consists of and the relation between this
collections.

Figure 3: Database Model

19

DATASETs store the essential information for our crawler to work. They
consist of two unique identifiers, _id and id, an array of versions and the
three objects meta, url and crawl_info.

FILEs hold all information about the individual versions of the datasets
referenced by their ids in the versions array from the datasets collection.

CHUNKs store the actual data of the files and reference the files collection
with its _id in the files_id field.

HOSTs are necessary for our locking mechanism and the host politeness to
work properly like the currentlyCrawled field which is a boolean value.

SOURCEs are referenced by the source array field in the meta object of
the datasets collection. One dataset can therefore have multiple sources and
one source can be referenced by multiple datasets as well.

4.2 Data Access & Client Interface
Application Programming Interface (API) We provide the following
API endpoints to interact with the Dataset Archiver. The API is devided
into a publicly available API for searching and retrieving our crawled OD
resources and a private API used for maintanance, requiring resp. credentials.

Detailed usage examples of the different APIs are documented on our
Webpage at https://archiver.ai.wu.ac.at/api-doc.

4.2.1 Public API

/stats/basic Basic statistics on the data stored in the crawler’s database.

/get/dataset/{URL} Returns a JSON object of a dataset description by its

referencing URL.

/get/datasets/{domain} Returns a JSON object of all dataset descriptions

provided by the same domain.

/get/dataset/type/{TYPE} Returns a JSON object of all dataset descrip-

tions which offer resources with the specified filetype e.g. ‘text/csv’ or just

‘csv’.

/get/file/{URL} Returns a resource (crawled file) by its referencingURL (i.e.,

for dc:accessURLs the latest downloaded version is retrieved, or, resp. a

concrete ds:hasVersion URL can be provided directly).

/get/files/type/{TYPE} Returns a zip file containing all versions of the spec-

ified filetype e.g. ‘text/csv’ or just ‘csv’.

20

https://archiver.ai.wu.ac.at/api-doc

/get/files/sparql?q={QUERY} Returns a zip file of the resource versions

specified by a SPARQL query, that is, all the files corresponding to (ver-

sion or dataset) URLs that appear in the SPARQL query result cf. detailed

explanations below.

4.2.2 Private API

/post/resource?secret=SECRET Adds a new resource to the crawler by post-

ing a JSON object containing the URL of the resource, the URL of the por-

tal and the format e.g. ‘text/csv’ or ‘csv’. Only the URL of the resource is

mandatory and a secret key credential is needed to post resources.

/post/resources?secret=SECRET Adds several resources at once in batch,

using the same parameters as above.

/crawl?id=ID&domain=DOMAIN&secret=SECRET Tells the clients which resource

has to be crawled. A crawl can be enforced with this endpoint.

4.2.3 SPARQL Endpoint

PREFIX arc: <https://archiver.ai.wu.ac.at/ns/csvw#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX csvw: <http://www.w3.org/ns/csvw#>

PREFIX dcat: <http://www.w3.org/ns/dcat#>

PREFIX dc: <http://purl.org/dc/elements/1.1>

INSERT {

<https://offenedaten.de/dataset/be8c1bf6-50cf-4fab-8ea3-179ca947652a>

dcat:accessURL <https://www.berlin.de/daten/liste-der-kfz-kennzeichen/kfz-kennz-d.csv> .

<https://www.berlin.de/daten/liste-der-kfz-kennzeichen/kfz-kennz-d.csv>

dcat:mediaType "text/csv" ;

dc:title "kfz-kennz-d.csv" ;

dc:hasVersion <https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_0> ;

dc:hasVersion <https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_1> .

<https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_0>

dc:identifier "0eec56f69acbda76b375ee982dbd4d7e" ;

dc:issued "2020-04-06T22:09:56.336Z" ;

dcat:byteSize 12642 .

<https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_1>

dc:identifier "74f78308cb653142663c057744cde84b" ;

dc:issued "2020-04-12T22:09:56.336Z" ;

dcat:byteSize 12642 . }

Figure 4: Example INSERT statement to add the dataset meta-information.

We make the metadata of the collected and archived datasets queryable
over SPARQL by providing the corresponding meta-information in a triple
store; the endpoint is available at https://archiver.ai.wu.ac.at/spa

rql.
To describe the datasets we make use of the Data Catalog vocabulary

(DCAT) [28] for all crawled datasets (dcat:Datast) to specify links to the

21

https://archiver.ai.wu.ac.at/sparql
https://archiver.ai.wu.ac.at/sparql

portal (dcat:Catalog) where datasets were published, as well as dcat:accessURLs
of resources and their respective format (dcat:mediaType).

Additionally, for tabular data resources, we provide metadata using the
CSV on the Web vocabulary (CSVW) [29]: CSVW provides table-specific
properties, such as csvw:tableSchema and csvw:datatypes per column.
Section 4.2.3 shows an example of the meta-information stored for an archived
dataset.

In this case, as the dataset is a CSV, we also insert CSVWeb metadata
as shown in Section 4.2.3. See Section 4.4 details about the meta-data gen-
eration.

INSERT {

_:csv csvw:url <https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_0> ;

arc:rows 403 ;

arc:columns 3 .

_:csv csvw:dialect [

csvw:encoding "utf-8" ;

csvw:delimiter "," ;

csvw:header true] .

_:csv csvw:tableSchema [

csvw:column <https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_0#1> ;

csvw:column <https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_0#2>] .

<https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_0#1>

csvw:name "Stadt bzw. Landkreis" ;

csvw:datatype "string" ;

rdfs:range <http://dbpedia.org/ontology/Place> .

<https://archiver.ai.wu.ac.at/api/v1/get/file/id/5e863ee2b511a4001191dcf8_0#2>

csvw:name "Bundesland" ;

csvw:datatype "string" ;

rdfs:range <http://dbpedia.org/ontology/PopulatedPlace> . }

Figure 5: INSERT statement of example CSV meta-information.

Data Download via SPARQL Besides the APIs to directly access files
from our crawl and the SPARQL interface to query metadata, we also offer
a way of directly downloading data parameterized by SPARQL queries, i.e.,
for queries that include any URLs from the subject (datasetURL) or object
(versionURL) of the dc:hasVersion property in our triple store, we provide
a direct, zipped, download of the data: here versionURLs will directly refer
to specific dowloaded file versions, whereas any datasetURL will retrieve the
resp. latest available version in our corpus.

For instance, the query in Figure 6 selects all archived resources from a
specific data portal (data.gv.at),9 collected after a certain time stamp,
with a specific HTTP media type (in this case CSV files); executing this query

9To filter datasets by certain data portals we enriched the descriptions by informa-
tion collected in the Portal Watch (https://data.wu.ac.at/portalwatch/): we use

22

data.gv.at
https://data.wu.ac.at/portalwatch/

SELECT ?versionURL WHERE {

?datasetURL arc:hasPortal ?Portal ; # ?datasetURL: the download URL of a specific resource

?Portal: a dcat:catalog indexed in Portal Watch

dc:hasVersion ?versionURL ; # ?versionURL: a crawled version of the resource

dcat:mediaType ?mediaType . # ?mediaType: media type as per HTTP response.

?versionURL dc:issued ?dateVersion . # ?dateVersion: crawl time.

FILTER (?Portal = <http://data.gv.at> &&

?mediaType = "text/csv" &&

strdt(?dateVersion, xsd:dateTimeStamp) >= "2020-05-10T00:00Z"^^xsd:dateTimeStamp) }

Figure 6: Example query to get a set of URLs of archived datasets.

at our SPARQL user interface (https://archiver.ai.wu.ac.at/yasgui)
gives an additional option to retrieve the specific matching versions directly as
a zip file. Alternatively, given this query to the /get/files/sparql?q={QUERY}
API mentioned above, will retrieve these without the need to use the UI.

4.3 Traffic and Workload-management
To ensure our system does not overstrain our hosts and their underlying
network infrastructure, we implemented some strategies to distribute the
workload. We also ensured that our system easily scales to meet the needs
of crawling large corpora.

4.3.1 Parallelization and Scalability

In order to parallelize our workload not only the Kubernetes infrastruc-
ture provides us with load balancing the work over the client pods, also
the database can be sharded over more than one node.

Parallelization Although JavaScript is neither threaded nor does it use
multiprocessing, we can mimic this with utilizing containerized software and
distributing the load over mutliple pods in the container. Also the asyn-
chronous programming style of JavaScript increases the amount of concurrent
crawls by a single client pod.

Scalability There are two methods for addressing scalability of a system:
vertical and horizontal scaling. The first is limited by the machine operating
the system. Therefore we are focusing on sharding our MongoDB across mul-
tiple machines in a horizontal manner. This will lead to higher throughput

arc:hasPortal to add this reference. More sophisticated federated queries could be for-
mulated by including the Portal Watch endpoint [2] which contains additional metadata.

23

https://archiver.ai.wu.ac.at/yasgui

operations and with this we can handle very large and a great amount of
datasets.[30]

Each shard contains a subset of the data and each query is routed by a
MongoDBs "mongos" instance, providing an interface between client appli-
cations and the sharded cluster. A shard key defines which node stores file
chunks: we shard by dataset id plus the version number as shard key to keep
all chunks of single files on the same node. The combination of Ingress, Ku-
bernetes and MongoDB connected through micro-services can by extended
dynamically, by adding more nodes, when needed.[30]

4.3.2 Dynamic crawl frequency

Umbrich, Mrzelj, and Polleres [6] propose to implement the scheduler as an
adaptive component,

"... which determines the next crawl time for URLs based on the
content change information and current download frequencies."

Therefore we considered using the comparison sampling method developed by
Neumaier and Umbrich [12] and also take into account the Nyquist sampling
theorem.[31] This theorem states,

"... that an analog signal waveform may be uniquely and precisely
reconstructed from samples taken of the waveform at equal time
intervals, provided the sampling rate is equal to, or greater than,
twice the highest significant frequency in the analog signal."

This means, to recreate a frequency from unknown source, the sampling rate
must at minimum be twice as high as the frequency itself.

1 let currInterval = (now - lastCrawlAttempt) // 5000
2 let changeDistribution = [
3 {newFile: true , interval: 5000},
4 {newFile: false , interval: 4600},
5 {newFile: false , interval: 6200},
6 {newFile: true , interval: 3800},
7 {newFile: false , interval: currInterval }]
8

9 // produces: [15800 , 8800]
10 let intervalOfNewFiles =
11 changeDistribution.reduce ((acc , curr) => {
12 if (curr.newFile == true || acc.length == 0) {
13 acc.push(curr.interval)
14 } else {

24

15 acc[acc.length - 1] += curr.interval
16 }
17 return acc;
18 }, []);
19 // produces: 12300
20 let interval = calcAvarage(intervalOfNewFiles)
21 // devide crawl time by 2 if it has changed
22 if (versionHasChanged) interval /= 2
23

24 setNextCrawlAttempt(interval)

Listing 3: Function to calculate next crawling attempt

To compare the samples we store the distribution of changes back in time
for a fixed amount of entries. The example in 3 shows how we compare the
last five crawling attempts. We then calculate the mean interval in which
the dataset has changed. If the dataset has changed, we divide the newly
proposed interval by two as the Nyquist sampling theorem advises, to ensure
that our sampling rate is twice as high as the changerate.

In Listing 3, the five "changeDistribution" samples are reduced to the
intervals between new files. Then the average change rate is calculated and
if the file has changed, the change rate is divided by two. Afterwards the
next crawl attempt is being set.

We also implemented a minimum and maximum interval for our datasets
to be getting crawled.

4.4 Data Management
While implementing and testing, we decided to only store files with a file
size less than 100 Megabytes. Our crawler counts the downloaded bytes and
if the maximum is reached, it cancels the download and drops the already
downloaded data. We are also trying to analyse the data we crawl on the fly
and MongoDB enforces compression over the saved chunks.

4.4.1 Type Detection and Data analysis

In order to detect the file-type we use the NPM package ‘stream-file-type’10

which provides a way to determine the file-type while piping the request to
our MongoDB. It does so by checking the first 4100 bytes of a file. This is
very efficient and saves an enormous amount of memory.

10 https://www.npmjs.com/package/stream-file-type

25

https://www.npmjs.com/package/stream-file-type

For further content based analysis we currently only support CSVs by
utilizing the ‘csvengine’ microserver from the Data Portal Watch.[2] It is
located at https://archiver.ai.wu.ac.at/csvprofiler/api/v1/ and
with this service we can populate our sparql endpoint with information about
the contents of a given CSV. It heuristically detects the encoding, delimiters,
as well as column datatypes of a CSV table, and provides this information us-
ing the csvw:dialect property. It further tries to detect if the CSV provides
a header row, to extract column labels.

4.4.2 Compression

The WiredTiger Storage Engine provides four different compression options
available when using MongoDB 4.2. These options can be varied on each
collection to be able to optimize the storage recreation cost for each collection
differently.

For our use case we decided to compare the default snappy option with the
new zstd method. We used sample data of 17,25 GB with the snappy option
enabled and compared this sample data to the zstd compression method,
which just used 16,05 GB. This 7% reduction in file size will help reduce the
needed storage even further.

4.4.3 Resource Handling

When someone adds resources to our system, we need to compare all his
entries with our matching sources. Therefore we use the "python-shell"11

NPM package to also execute Python Scripts parallel to our JavaScript code.
To accomplish this, we exchange JSON data via the standard input.

1 obj = json.loads(input ())
2 resp = {}
3 for oldDS in obj["old"]:
4 for newDS in obj["new"]:
5 if (len(newDS[’meta’][’source ’]) > 0 and
6 oldDS[’id’] == newDS[’id’]):
7 IDs = list(set(oldDS[’meta’][’source ’]) | set(

newDS[’meta’][’source ’]))
8

9 #just add if new sources
10 if (len(IDs) > len(oldDS[’meta’][’source ’])):
11 #search for key to have unique entries
12 if oldDS[’_id’] in resp:

11 https://www.npmjs.com/package/python-shell

26

https://archiver.ai.wu.ac.at/csvprofiler/api/v1/
https://www.npmjs.com/package/python-shell

13 #union on unique href key
14 combIDs = list(set(resp[oldDS[’_id’]]) | set(

IDs))
15 #just add if new sources
16 if (len(combIDs) > len(resp[oldDS[’_id’]])):
17 resp[oldDS[’_id’]] = combIDs
18 #first key entry
19 else:
20 resp[oldDS[’_id’]] = IDs
21

22 print(json.dumps(resp))
Listing 4: Datasetsource comparison with Python

To compare each newly added resource with an existing dataset resource,
we export the data to be analyzed by a Python Script because this deep
comparison can be handled by Python in a more efficient way. In Listing 4
we demonstrate how all source entries of an existing dataset are compared
to newly added source entries.

4.5 Dependencies and Open Issues
For our code to work properly we rely on different dependencies. Here we
list our core dependencies we are using from the NPM package registry:

• csv-parser

• express

• helmet

• mime

• mongodb

• mongoose

• mongoose-unique-validator

• node-fetch

• python-shell

• robots-parser

• socket.io

• socket.io-client

• stream-file-type

Open Issues Although our system performs very well and runs stable,
we need to improve our politeness metrics and the compression rate of the
MongoDB GridFS storage. Also the metadata generation has to be enhanced
and more unit-tests have to be programmed to advance further development.

Another big problem by now is the limitation of our host politeness rules.
To address this issue, an intelligent strategy to determine the concurrent

27

requests a host is able to serve is needed. This could potentially be a research
question on its own.

5 Findings
This sections describes the tests we conducted with our kubernetes cluster
infrastructure and tries to give an impression of the capabilities of the crawler.

5.1 Corpus of the archivers database
At the moment of writing this work, the database of our crawler stores fol-
lowing numbers of documents in its collections, as table 1 shows:

Count Collection
1.136.872 Datasets

7.746 Hosts
442.293 Sources

6.420.887 Files

Table 1: Collections

We also discovered that most datasets are hosted by data.opendatasoft.com.
Table 2 shows the top-5 most indexed hosts:

Count Host
66.389 data.opendatasoft.com
59.519 clss.nrcan.gc.ca
44.268 services.cuzk.cz
39.871 satc.rncan.gc.ca
27.656 www.geoportal.rlp.de

Table 2: Datasetcount per Host

By the time we finished writing this thesis our archiver has collected over
6.420.887 files from 1.136.872 URLs. We discovered that 8.59% of this files
on disc are duplicates. Mainly because of saving error pages from portals
which do not provide proper HTTP headers.

Overall we collected 7 TB worth of data, but with the compression of
MongoDBs WiredTiger engine, our collection of chunks only consumes 4
TB of disc space. We limited our system to collect only files smaller than
100 Megabytes and Table 3 lists the distribution of the kilobyte-size of our
collected files.

28

Quantile of Files Kilobyte
10 % < 3
25 % < 13
50 % < 54
75 % < 204
85 % < 504
95 % < 3.204
99 % < 27.638

Table 3: File Size Distribution

5.2 Monitoring and Bench-marking
To analyze the overall performance of our system, we conducted a 15 minutes
crawling test-run. Therefore we used a cleaned database with 0 crawling
attempts before. The database only consisted of the datasets, hosts and
sources listed in table 1.

The node in our cluster for this experiment provided 25.27 GB of RAM
and 8 CPU cores. We spawned 6 Client Pods, one Master Scheduler and
one MongoDB Instance on this single node. Overall we used around 80% of
RAM, of which 75% where used by the MongoDB. Unfortunately the CPU
load was at 100% because all of our components where running on the same
node.

Table 4 gives us an overview of the scheduled datasets to download for this
15 minutes. Our scheduler wanted to crawl 37.959 datasets but only 21.988
were started because the Clients can have a maximal amount of asynchronous
crawling attempts to adjust the load a client is capable of handling. Of this
21.988 datasets, 9.965 were aborted due to bad status codes or because they
reached the maximal file size. At the end we successfully saved 12.023 files
and added 9.965 error messages to our database.

Datasets Status
37.959 wanted to crawl
21.988 started to crawl
9.965 aborted
12.023 downloaded

Table 4: Status

In table 5 we list the avarage file size of the downloaded data, the total
amount of data we have and how much physical storage is needed for the
whole crawling system.

29

Size Description
1,358 Mb average file size
16,327 Gb total files stored

12 Gb physical storage needed

Table 5: Storage

In table 6 we provide a distribution of different data types we have crawled
in just 15 minutes and overall.

15 min Count File Type overall File Type
4.687 html 253.688 text/html
1.743 xml 145.121 application/json
1.321 csv 121.175 text/csv
1.130 pdf 98.383 application/zip
789 json 94.595 application/xml
599 zip 48.185 application/pdf
486 bin 46.396 text/xml
405 xlsx 27.641 application/xlsx
222 msi 23.624 application/octet-stream
133 txt 21.725 application/x-msi

Table 6: File Type Distribution

We also measured the time it takes for a dataset to be downloaded. On
average a file needs 22,089 seconds to be stored in our system, which can be
seen in table 7.

Time Description
15,952 sec average response time
6,137 sec saving time
22,089 sec total download time

Table 7: Time Stats

We further analyzed the network throughput of the system and recog-
nized, that our Grafana metric tool only provides the overall network statis-
tics. This means, that also the connection to our database is counted as net-
work traffic. Therefore we subtracted the average throughput of our Clients
from the average throughput of the MongoDB and realized that our sys-
tem produces 31,6 MB/s of traffic on average, which are 252,8 Megabits per
second.

30

Speed Component
65,4 MB/s Clients
33,8 MB/s MongoDB
31,6 MB/s difference

Table 8: Network Traffic

This numbers are just to showcase the capabilities of this system. In a
real world application the system would schedule the crawling attempts over
time in a dynamic way. This means there might not be so much system load
because not all datasets would need to be crawled at the exact same time.

6 Conclusion and Further Research
Conclusion In this thesis we have developed a system capable of down-
loading huge amounts of data in a parallelized, scalable and polite way.
ODArchive is set to provide easy access to a large, up-to-date corpus of
datasets from OD portals: we archive regularly re-crawled versions of under-
lying data resources for datasets from these portals, based on an adaptive,
heuristically estimated crawl rate and have presented a scalable extensible
infrastructure to sustainably run such an archive.

In our resource track paper for ISWC2020 we show how our system can be
used by linking tabular OD datasets to existing KGs as well as interlinking
them amongst each other by finding reference tables within the corpus. The
initial results of this paper clearly suggest that the characteristics of the
structured data found on OD portals and readily provided in our corpus are
quite different from other available copora, such as Web Tables. Additionally,
as our framework keeps on running, it shall also enable temporal analyses
over the evolution of OD resources.

We also evaluated the scalability of our system by indexing datasets from
137 OD portals over a period of 8 weeks:

It supports (i) increasing resources of the Kubernetes cluster, (ii) connect-
ing other clusters and balancing/distributing the work load across different
nodes, and (iii) horizontal scaling by including additional MongoDB shards,
if storage needs to be increased.

We provide a query and user interface to interact with the system: Users
are now also able to retrieve information about the data corpus via an API
and a SPARQL endpoint, which allow flexible filtering, and generation of
sub-corpora for further reproducible experiments.

By the time of writing this thesis our ODArchive has collected over

31

6.420.887 files from 1.136.872 URLs totalling 7 TB worth of data. Our main
conclusions can be summarized as follows:

• We discovered that all files on disc consume just 4 TB of disk space
and about 8.59% of them are duplicates.

• Our analysis showed that 50% of these files are smaller than 55 Kilo-
bytes, 95% are smaller than 3,2 Megabytes and 99% are smaller than
27,6 Megabytes.

• In total 169.123 URLs retrieved from the OD portals where not avail-
able at all: either the HTTP response code indicated that the dataset
is not retrievable, or the host was not even reachable.

• Another issue that we encountered is that many of the dataset URLs
return HTML pages, which might not be the actual data we requested.
In total there are 253.679 html files of which around 25% are returned
with an error code. This means of all the 169.123 datasets with error
codes, 37,68% are html files. In future work we want to develop heuris-
tics to detect if the datasets could be retrieved using accurate content
negotiation.

• The average downloadtime while crawling a version is 3966,83 millisec-
onds or 3,96683 seconds and on average a dataset consists of 7.978
versions.

Further Research To reduce the storage cost of our system, further re-
search needs to be done for de-duplicating the now generated chunks of files.

We are also keen to generate more meta date while downloading and
further enhance the politeness rules of the crawling system. One approach
could be to determine a politeness metric based on the number of datatsets
a host serves.

In order to extend the corpus, we are also planing to include datasets
from other sources, e.g. data science platforms such as Kaggle, or research
data platforms such as Zenodo or Harvard Dataverse.

Another interesting field of research might now be to analyze the changes
of the downloaded files and produce indexes to query the crawled data based
on the changes over time. We are also looking into detecting reference tables
in our corpus and try to further provide semantic labelling of our semi-
structured data.

32

Also the combination with already existing systems of the Vienna Uni-
versity of Economics and Business like the newly introduced JupyterHub12

or the Learn@WU13 platform might be considered to motivate the imple-
mentation of the previously mentioned secondary requirements. This would
dramatically enhance the services our system is able to provide.

In future work we plan to also analyze and attempt to interlink other
structured formats in our corpus; additionally, as our framework keeps on
running, it shall also enable temporal analyses over the evolution of OD re-
sources. The infrastructure shall allow detailed analyses overall, but also with
a narrower scope, restricting to data from particular portals or regions. Last,
but not least, we invite everybody to use ODArchive and provide feedback
(e.g., in terms of additional API feature requests).

Availability The ODArchive can be accessed at:
https://archiver.ai.wu.ac.at/.

The source code is available under the MIT license on GitHub:
https://github.com/websi96/datasetarchiver.

7 Acknowledgements
We thank our System Administrator Martin Beno for the help setting up
the Kubernetes cluster and also the Department for Information Systems
of the Vienna University of Economics and Business for providing us with
the needed technological resources. We also thank ao.Univ.Prof. Dr Johann
Mitlöhner for jointly writing the resource track paper for ISWC2020.
As of writing my Bachelor Thesis, I personally thank Dr. Sebastian Neumaier
and Univ.Prof. Dr. Axel Polleres for guiding me through the process of
writing this work.

12 https://jupyter.ai.wu.ac.at/
13 https://learn.wu.ac.at/

33

https://archiver.ai.wu.ac.at/
https://github.com/websi96/datasetarchiver
https://jupyter.ai.wu.ac.at/
https://learn.wu.ac.at/

References
[1] Thomas Weber et al. “ODArchive – Creating an archive for structured

data from Open Data Portals”. In: 19th International Semantic Web
Conference (ISWC 2020), Lecture Notes in Computer Science (LNCS),
Virtual Conference (Athens, Greece), Nov. 2020. url: https://aic.
ai.wu.ac.at/~polleres/publications/webe-etal-2020ISWC.pdf.

[2] Sebastian Neumaier, Jürgen Umbrich, and Axel Polleres. “Automated
quality assessment of metadata across open data portals”. In: Journal
of Data and Information Quality (JDIQ) 8.1 (2016), pp. 1–29. issn:
19361955. doi: 10.1145/2964909. url: https://aic.ai.wu.ac.at/
~polleres/publications/neum-etal-2016JDIQ.pdf.

[3] Dan Brickley, Matthew Burgess, and Natasha F. Noy. “Google Dataset
Search: Building a search engine for datasets in an open Web ecosys-
tem”. In: The World Wide Web Conference, WWW 2019, San Fran-
cisco, CA, USA, May 13-17, 2019. ACM, 2019, pp. 1365–1375. doi:
10.1145/3308558.3313685.

[4] Ramanathan V Guha, Dan Brickley, and Steve Macbeth. “Schema. org:
evolution of structured data on the web”. In: Communications of the
ACM 59.2 (2016), pp. 44–51.

[5] Oliver Lehmberg et al. “A large public corpus of web tables containing
time and context metadata”. In: Proceedings of the 25th International
Conference Companion on World Wide Web. 2016, pp. 75–76.

[6] Jürgen Umbrich, Nina Mrzelj, and Axel Polleres. “Towards capturing
and preserving changes on the Web of data”. In: CEUR Workshop Pro-
ceedings. 2015. url: https://pdfs.semanticscholar.org/971b/
178200a0bc14735116ace49a0b164e68a926.pdf.

[7] Amol Deshpande. Why Git and SVN Fail at Managing Dataset Ver-
sions. 2015. url: http://www.cs.umd.edu/~amol/DBGroup/2015/
06/26/datahub.html (visited on 05/15/2019).

[8] Stephen Cook. “The P versus NP problem”. In: The millennium prize
problems (2006), pp. 87–104. url: http : / / www . claymath . org /

library/monographs/MPPc.pdf.
[9] Rolf Sint et al. “Combining unstructured, fully structured and semi-

structured information in semantic wikis”. In: CEUR Workshop Pro-
ceedings. Vol. 464. 2009, pp. 73–87.

[10] Patrick Oliver Riemer. “Implementing a "polite" proxy for different
Web Crawling Use Cases”. unpublished. 2017.

34

https://aic.ai.wu.ac.at/~polleres/publications/webe-etal-2020ISWC.pdf
https://aic.ai.wu.ac.at/~polleres/publications/webe-etal-2020ISWC.pdf
https://doi.org/10.1145/2964909
https://aic.ai.wu.ac.at/~polleres/publications/neum-etal-2016JDIQ.pdf
https://aic.ai.wu.ac.at/~polleres/publications/neum-etal-2016JDIQ.pdf
https://doi.org/10.1145/3308558.3313685
https://pdfs.semanticscholar.org/971b/178200a0bc14735116ace49a0b164e68a926.pdf
https://pdfs.semanticscholar.org/971b/178200a0bc14735116ace49a0b164e68a926.pdf
http://www.cs.umd.edu/~amol/DBGroup/2015/06/26/datahub.html
http://www.cs.umd.edu/~amol/DBGroup/2015/06/26/datahub.html
http://www.claymath.org/library/monographs/MPPc.pdf
http://www.claymath.org/library/monographs/MPPc.pdf

[11] Google Webmaster Central Blog. A note on unsupported rules in robots.txt.
url: https://webmasters.googleblog.com/2019/07/a-note-on-
unsupported-rules-in-robotstxt.html (visited on 11/13/2019).

[12] Sebastian Neumaier and Jurgen Umbrich. “Measures for assessing the
data freshness in open data portals”. In: Proceedings - 2016 2nd Inter-
national Conference on Open and Big Data, OBD 2016. 2016. isbn:
9781509040544. doi: 10.1109/OBD.2016.10.

[13] archive.org. The Internet Archive. url: https://archive.org/about/
(visited on 06/19/2020).

[14] Common Crawl. Common Crawl. url: https://commoncrawl.org/
about/ (visited on 06/19/2020).

[15] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. “Profiling re-
lational data: a survey”. In: VLDB J. 24.4 (2015), pp. 557–581. doi:
10.1007/s00778-015-0389-y.

[16] Kaggle. Kaggle. url: https://www.kaggle.com/ (visited on 06/19/2020).
[17] Javier D. Fernández, Patrik Schneider, and Jürgen Umbrich. “The DB-

pedia Wayback Machine”. In: Proceedings of the 11th International
Conference on Semantic Systems. SEMANTICS 15. Vienna, Austria:
Association for Computing Machinery, 2015, pp. 192–195. isbn: 9781450334624.
doi: 10.1145/2814864.2814889. url: https://doi.org/10.1145/
2814864.2814889.

[18] Souvik Bhattacherjee et al. “Principles of Dataset Versioning: Explor-
ing the Recreation/Storage Tradeoff”. In: PVLDB 8.12 (2015), pp. 1346–
1357. doi: 10.14778/2824032.2824035. url: http://www.vldb.org/
pvldb/vol8/p1346-bhattacherjee.pdf.

[19] GitHub.com. Versioning large files. url: https://help.github.com/
en/articles/versioning-large-files (visited on 05/28/2019).

[20] Anant P. Bhardwaj et al. “DataHub: Collaborative Data Science &
Dataset Version Management at Scale”. In: CIDR 2015, Seventh Bi-
ennial Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 4-7, 2015, Online Proceedings. 2015. url: http:
//cidrdb.org/cidr2015/Papers/CIDR15%5C_Paper18.pdf.

[21] postgresql.org. Large Objects. url: https://www.postgresql.org/
docs/current/lo-intro.html (visited on 05/28/2019).

35

https://webmasters.googleblog.com/2019/07/a-note-on-unsupported-rules-in-robotstxt.html
https://webmasters.googleblog.com/2019/07/a-note-on-unsupported-rules-in-robotstxt.html
https://doi.org/10.1109/OBD.2016.10
https://archive.org/about/
https://commoncrawl.org/about/
https://commoncrawl.org/about/
https://doi.org/10.1007/s00778-015-0389-y
https://www.kaggle.com/
https://doi.org/10.1145/2814864.2814889
https://doi.org/10.1145/2814864.2814889
https://doi.org/10.1145/2814864.2814889
https://doi.org/10.14778/2824032.2824035
http://www.vldb.org/pvldb/vol8/p1346-bhattacherjee.pdf
http://www.vldb.org/pvldb/vol8/p1346-bhattacherjee.pdf
https://help.github.com/en/articles/versioning-large-files
https://help.github.com/en/articles/versioning-large-files
http://cidrdb.org/cidr2015/Papers/CIDR15%5C_Paper18.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15%5C_Paper18.pdf
https://www.postgresql.org/docs/current/lo-intro.html
https://www.postgresql.org/docs/current/lo-intro.html

[22] Daniel Coupal and Ken W. Alger; mongoDB.com. Building with Pat-
terns: The Document Versioning Pattern. url: https://www.mongodb.
com/blog/post/building-with-patterns-the-document-versioning-

pattern (visited on 05/28/2019).
[23] nodejs.org. Overview of Blocking vs Non-Blocking. url: https : / /

nodejs.org/de/docs/guides/blocking-vs-non-blocking/#concurrency-

and-throughput (visited on 12/11/2019).
[24] nodejs.org. Node.js. url: https://nodejs.org/en (visited on 11/13/2019).
[25] kubernetes.io. Kubernetes. url: https://kubernetes.io/ (visited on

11/16/2019).
[26] Johann Mitloehner et al. “Characteristics of open data CSV files”. In:

Proceedings - 2016 2nd International Conference on Open and Big
Data, OBD 2016. 2016. isbn: 9781509040544. doi: 10.1109/OBD.

2016.18.
[27] F. Doglio. Pro REST API Development with Node.js. Apress, 2015.

isbn: 9781484209172. url: https://books.google.at/books?id=
kjUwCgAAQBAJ.

[28] Fadi Maali and John Erickson. Data Catalog Vocabulary (DCAT). W3C
Recommendation. W3C Recommendation. http://www.w3.org/TR/
vocab-dcat/. Jan. 2014.

[29] Rufus Pollock et al. Metadata Vocabulary for Tabular Data. W3C Rec-
ommendation. https : / / www . w3 . org / TR / 2015 / REC - tabular -

metadata-20151217/. Dec. 2015.
[30] mongoDB.com. Sharding. url: https://docs.mongodb.com/manual/

sharding/ (visited on 11/14/2019).
[31] Martin H. Weik. “Nyquist theorem”. In: Computer Science and Com-

munications Dictionary. Boston, MA: Springer US, 2001, pp. 1127–
1127. isbn: 978-1-4020-0613-5. doi: 10.1007/1-4020-0613-6_12654.
url: https://doi.org/10.1007/1-4020-0613-6_12654.

36

https://www.mongodb.com/blog/post/building-with-patterns-the-document-versioning-pattern
https://www.mongodb.com/blog/post/building-with-patterns-the-document-versioning-pattern
https://www.mongodb.com/blog/post/building-with-patterns-the-document-versioning-pattern
https://nodejs.org/de/docs/guides/blocking-vs-non-blocking/#concurrency-and-throughput
https://nodejs.org/de/docs/guides/blocking-vs-non-blocking/#concurrency-and-throughput
https://nodejs.org/de/docs/guides/blocking-vs-non-blocking/#concurrency-and-throughput
https://nodejs.org/en
https://kubernetes.io/
https://doi.org/10.1109/OBD.2016.18
https://doi.org/10.1109/OBD.2016.18
https://books.google.at/books?id=kjUwCgAAQBAJ
https://books.google.at/books?id=kjUwCgAAQBAJ
http://www.w3.org/TR/vocab-dcat/
http://www.w3.org/TR/vocab-dcat/
https://www.w3.org/TR/2015/REC-tabular-metadata-20151217/
https://www.w3.org/TR/2015/REC-tabular-metadata-20151217/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/sharding/
https://doi.org/10.1007/1-4020-0613-6_12654
https://doi.org/10.1007/1-4020-0613-6_12654

	Introduction
	Problem Overview
	Data Type Detection
	Detection of Changes
	The Storage-Recreation Trade-off
	Workload-management and Scalability

	Research Question
	Thesis Structure

	Preliminaries & Background Literature
	Data Types
	Unstructured Data
	Semi-structured Data
	Structured Data

	Architectural Hurdles
	Host Politeness
	Dynamic Crawl-Rate
	Scalability

	Related works on data archiving and versioning
	Online Platforms
	Git and SVN

	Preliminaries and Technologies used in this thesis
	Databases
	Programming Languages and Concurrency
	Kubernetes, NGINX Ingress and Reverse Proxy

	Requirements and Services
	Primary Requirements
	Application Programming Interface

	Secondary Requirements

	Implementation
	Architecture
	System Structure
	Sequence Diagram
	Database Model

	Data Access & Client Interface
	Public API
	Private API
	SPARQL Endpoint

	Traffic and Workload-management
	Parallelization and Scalability
	Dynamic crawl frequency

	Data Management
	Type Detection and Data analysis
	Compression
	Resource Handling

	Dependencies and Open Issues

	Findings
	Corpus of the archivers database
	Monitoring and Bench-marking

	Conclusion and Further Research
	Acknowledgements

